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Mechanical thinning and prescribed burning are commonly used to restore dry, mixed-conifer 

forests that historically experienced frequent fire. Although these treatments successfully reduce 

fuel loads, their ability to achieve ecological objectives, such as promoting native plant diversity, 

is less certain. My thesis research examined how temporal and spatial scales of observation and 

the approach to analyzing scale-dependent data influence our understanding of understory 

vegetation responses to thinning intensity and burning. I used long-term data on understory 

species richness from a restoration experiment in central Washington. I found no effect of 

thinning intensity alone and scale-dependent responses to burning. For example, annual richness 

increased over time in burned plots, particularly at small spatial scales, suggesting enhanced 

recruitment from early-established populations and little perennial expansion. I also found that 

the analytical approach used to address common challenges of large-scale, long-term 



 

 

experiments, such as variation in pre-treatment conditions and the loss of sample units over time, 

can affect the conclusions drawn from these experiments. However, careful specification of 

research questions and consideration of data limitations can yield insights into these conclusions. 

This research highlights long-term ecological benefits of prescribed burning and the need for 

measurements over time and among spatial scales, as well as the careful evaluation of analytical 

approaches, to clarify whether fuel-reduction treatments meet the ecological objectives of dry 

forest restoration. 
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Introduction 

 

 Forty percent of Northwest forests that historically experienced frequent fire are in need 

of restoration (Haugo et al. 2015). Nearly a century of fire exclusion and a history of grazing and 

selective logging have altered vegetation patterns and processes and increased the risks of high-

severity wildfire and insect outbreak (Agee 1993, Hessburg and Agee 2003). Increases in 

overstory density and homogeneity in spatial patterning–documented by dendrochronology and 

historical photos–are suspected to have been accompanied by a shift in understory vegetation 

from a diverse shrub and herbaceous community to one favoring late-successional species 

(Hessburg et al. 2000, Allen et al. 2002). 

 Loss of understory diversity is important for dry forests. Comprising more than 95% of 

forest vascular plant species in these coniferous forests, understory vegetation plays an important 

role in ecosystem functions by competing with tree seedlings, facilitating the recycling of plant 

nutrients, and providing forage and cover for wildlife (Gilliam et al. 2007). High biodiversity has 

also been shown to increase productivity and ecosystem resilience to disturbance (Zhang et al. 

2012, Mellin et al. 2014). Restoring understory diversity may very well have broad benefits for 

dry forest ecosystems. 

 To reduce wildfire risk and restore ecological processes and conditions, land managers 

increasingly use mechanical thinning and controlled burning (Brown et al. 2004, USDA et al. 

2004, Agee and Skinner 2005, Martinson and Omi 2013). While fuel reduction using these 

treatments is typically successful (Stephens et al. 2009,, Stephens et al. 2012, Fulé et al. 2012, 

Martinson and Omi 2013), restoring ecological attributes, such as understory diversity, has 

proven to be a more complex goal. Studies to date show considerable variation in the responses 
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of understory diversity to thinning and burning (Bartuszevige and Kennedy 2009, McIver et al. 

2013, Schwilk et al. 2014, Abella and Springer 2015, Wills et al. 2017, L. Urgenson, 

unpublished data). In this thesis, I explore three factors that may contribute to this variation: 

temporal scale, spatial scale, and analytical approach. Many others, such as forest type, physical 

environment, disturbance history, and treatment implementation, may also play a role. 

 A fundamental challenge of thinning and burning research is incorporating the long 

temporal scales and multiple spatial scales over which forests respond to management. Most 

studies examine responses in the short-term (fewer than five years following treatment) and at a 

single spatial scale (e.g., 0.1-ha plots; Bartuszevige and Kennedy 2009, Abella and Springer 

2015, Wills et al. 2017, L. Urgenson, unpublished data), despite evidence that responses vary 

over longer timeframes (e.g., 5-20 years; Harrod et al. 2008, Webster and Halpern 2010) and 

among sampling areas (e.g., 1-m2 to 10 ha; Dodson and Fielder 2006, Dodson and Peterson 

2010).  Explicitly considering time and space may enhance our understanding of how thinning 

and burning affect understory diversity. Furthermore, examining these scales in conjunction has 

the potential to reveal patterns in variation not seen at single measures of either (White et al. 

2010).  

 Another challenge is appropriately analyzing ecological data that is subject to low 

replication and high pre-existing variation. Researchers make analytical choices regarding, for 

example, aggregating nested sample units, incorporating variable thinning or burning intensities, 

and accounting for pre-existing variation among sample units. Decisions regarding these issues 

vary widely among studies, despite similar research questions and experimental designs (e.g., 

Metlen et al. 2004, Dodson et al. 2008, Strahan et al. 2015). Examining how and why these 

decisions affect research conclusions can aid in selecting the most appropriate approach for a 
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data set and perhaps unify studies in the pursuit of answers to similar questions. 

 To explore these ideas, I used long-term data from a restoration experiment in central 

Washington designed to test thinning and burning alone and in combination. In Chapter 1, I 

partitioned variation in understory diversity responses over temporal scales of two and 12 years 

and spatial scales of 1 m2 and 0.1 ha. In Chapter 2, I compared outcomes of statistical tests 

following assorted analytical decisions to determine the most appropriate approach for the study. 

These chapters serve to examine the effects of temporal scale, spatial scale, and analytical 

approach on our understanding of outcomes of dry forest restoration. 

 

Literature Cited 

 

Abella, S.R. and Springer, J.D. 2015. Effects of tree cutting and fire on understory vegetation in 

mixed conifer forests. Forest Ecology and Management. 335: 281–299. 

 

Agee, J.K. 1993. Fire Ecology of Pacific Northwest Forests. Covelo, CA: Island Press. 

 

Agee, J.K. and Skinner, C.N. 2005. Basic principles of forest fuel reduction treatments. Forest 

Ecology and Management. 211: 83–96. 

 

Allen, C.D., Savage, M., Falk, D.A., Suckling, K.F., Swetnam, T.W., Schulke, T., Stacey, P.B., 

Morgan, P., Hoffman, M., and Klingel, J.T. 2002. Ecological restoration of Southwestern 

ponderosa pine ecosystems: a broad perspective. Ecological Applications. 12: 1418–

1433. 

 

Bartuszevige, A.M. and Kennedy, P.L. 2009. Synthesis of knowledge on the effects of fire and 

thinning treatments on understory vegetation in U.S. dry forests. Corvallis, OR: Oregon 

State University Press, Final Report to the Joint Fire Sciences Program. 

 

Brown, R.T., Agee, J.K., and Franklin, J.F. 2004. Forest restoration and fire: principles in the 

context of place. Conservation Biology 18: 903–912. 

 

Dodson, E.K. and Fiedler, C.E. 2006. Impacts of restoration treatments on alien plant invasion in 

Pinus ponderosa forests, Montana, USA. Journal of Applied Ecology. 42: 887-897. 

 



  Introduction 

4 

 

Dodson, E.K. and Peterson, D.W. 2010. Dry coniferous forest restoration and understory plant 

diversity: The importance of community heterogeneity and the scale of observation. 

Forest Ecology and Management. 260: 1702–1707. 

Dodson, E.K., Peterson, D.W., and Harrod, R.J. 2008. Understory vegetation response to 

thinning and burning restoration treatments in dry conifer forests of the eastern Cascades, 

USA. Forest Ecology and Management. 255: 3130–3140. 

 

Fulé, P.Z., Crouse, J.E., Roccaforte, J.P., and Kalies, E.L. 2012. Do thinning and/or burning 

treatments in western USA ponderosa or Jeffrey pine-dominated forests help restore 

natural fire behavior? Forest Ecology and Management. 269: 68–81. 

 

Harrod, R.J., Fonda, R.W., and McGrath, M.K. 2008. Vegetation response to thinning and 

burning in a ponderosa pine forest, Washington. Northwest Science. 82(2): 141-150. 

 

Haugo, R., Zanger, C., Demeo, T., Ringo, C., Shlisky, A., Blankenship, K., Simpson, M., 

Mellen-mclean, K., Kertis, J., and Stern, M. 2015. A new approach to evaluate forest 

structure restoration needs across Oregon and Washington, USA. Forest Ecology and 

Management. 335: 37–50. 

 

Hessburg, P.F. and Agee, J.K. 2003. An environmental narrative of Inland Northwest United 

States forests, 1800-2000. Forest Ecology and Management. 178: 23-59. 

 

Hessburg, P.F., Smith, B.G., Salter, R.B., Ottmar, R.D., and Alvarado, E. 2000. Recent changes 

(1930s-1990s) in spatial patterns of interior northwest forests, USA. Forest Ecology and 

Management. 136: 53-83. 

 

Gilliam, F.S. 2007. The ecological significance of the herbaceous layer in temperate forest 

ecosystems. BioScience. 57(10): 845-858. 

 

Martinson, E.J. and Omi, P.N. 2013. Fuel treatments and fire severity: a meta-analysis. Res. Pap. 

RMRS-RP-103WWW. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, 

Rocky Mountain Research Station. 38 p. 

 

McIver, J.D., Stephens, S.L., Agee, J.K., Barbour, J., Boerner, R.E.J., Edminster, C.B., Erickson, 

K.L., Farris, K.L., Fettig, C.J., Fiedler, C.E., Haase, S., Hart, S.C., Keeley, J.E., Knapp, 

E.E., Lehmkuhl, J.F., Moghaddas, J.J., Otrosina, W., Outcalt, K.W., Schwilk, D.W., 

Skinner, C.N., Waldrop, T.A., Weatherspoon, C.P., Yaussy, D.A., Youngblood, A., and 

Zack, S. 2013. Ecological effects of alternative fuel-reduction treatments: highlights of 

the national Fire and Fire Surrogate study (FFS). International Journal of Wildland Fire. 

22: 66-82. 

 

Mellin, C., Bradshaw, C.J.A., Fordham, D.A., and Caley, M.J. 2014. Strong but opposing B-

diversity – stability relationships in coral reef fish communities. Proceedings of the Royal 

Society B. 281: 1-10. 

 



  Introduction 

5 

 

Metlen, K.L., Fiedler, C.E., and Youngblood, A. 2004. Understory response to fuel reduction 

treatments in the Blue Mountains of northeastern Oregon. Northwest Science. 78(3): 175-

185. 

 

Schwilk, D.W., Keeley, J.E., Knapp, E.E., Mciver, J., Bailey, J.D., Fettig, C.J., Fiedler, C.E., 

Harrod, R.J., Moghaddas, J.J., Kenneth, W., Skinner, C.N., Stephens, S.L., Waldrop, 

T.A., Yaussy, D.A., and Youngblood, A. 2014. The National Fire and Fire Surrogate 

Study : Effects of Fuel Reduction Methods on Forest Vegetation Structure and Fuels. 

Ecological Applications. 19: 285–304. 

 

Stephens, S.L., Iver, J.D.M., Boerner, R.E.J., Fettig, C.J., Joseph, B., Hartsough, B.R., Kennedy, 

P.L., and Schwilk, D.W. 2012. The Effects of Forest Fuel-Reduction Treatments in the 

United States. BioScience. 62(6): 549–560. 

 

Stephens, S.L., Moghaddas, J., Edminster, C., Fielder, C.E., Haase, S., Harrington, M., Keeley, 

J.E., Knapp, E.E., McIver, J.D., Metlen, K., Skinner, C.N., Youngblood, A. 2009. Fire 

treatment effects on vegetation structure, fuels, and potential fire severity in western U.S. 

forests. Ecological Applications. 19(2): 305–320. 

 

Strahan, R.T., Stoddard, M.T., Springer, J.D., and Huffman, D.W. 2015. Increasing weight of 

evidence that thinning and burning treatments help restore understory plan communities 

in ponderosa pine forests. Forest Ecology and Management. 353: 208-220. 

 

USDA Forest Service and USDI Bureau of Land Management. 2004. The Healthy Forests 

Initiative and Healthy Forests Restoration Act: Interim Field Guide. FS–799. 

Washington, DC: U.S. Department of Agriculture, Forest Service. 58 p. 

<http://www.fs.fed.us/projects/hfi/field-guide/web/page03.php#hfi>. 

 

Webster, K.M. and Halpern, C.B. 2010. Long-term vegetation responses to reintroduction and 

repeated use of fire in mixed-conifer forests of the Sierra Nevada. Ecosphere. 1(5): 1-27. 

 

White, E.P., Ernest, S.K.M., Adler, P.B., Hurlbert, A.H., and Lyons, S.K. 2010. Integrating 

spatial and temporal approaches to understanding species richness. Philosophical 

Transactions of the Royal Society. 365: 3633-3643. 

 

Willms, J., Bartuszevige, A., Schwilk, D.W., and Kennedy, P.L. 2017. The effects of thinning 

and burning on understory vegetation in North America: a meta-analysis. Forest Ecology 

and Management. 392: 184-194. 

 

Zhang, Y., Chen, Y.H., and Reich, P.B. 2012. Forest productivity increases with evenness, 

species richness, and trait variation: a global meta-analysis. Journal of Ecology. 100: 742-

749. 

 

 



  Chapter 1 

6 

 

Chapter 1 

 

Effects of thinning and burning on dry forest understory richness 

vary with temporal and spatial scales 

 

Abstract  

 

 Despite the widespread use of thinning and burning to reduce fuel loads and restore the 

structure of dry forests of the western U.S., the ability of these treatments to achieve ecological 

objectives remains uncertain. In this study, I examined how temporal and spatial scales of 

observation influence our understanding of the effectiveness of these treatments in promoting 

understory diversity. I examined the effects of thinning intensity, burning, and pre-treatment 

species richness on post-treatment richness at differing temporal and spatial scales using data 

from a long-term experiment in central Washington that is part of the national Fire and Fire 

Surrogate study. I used linear mixed-effects models to compare responses among different 

components of the understory (shrub vs. herbaceous species, annuals vs. perennials, natives vs. 

non-natives) at two points in time (two and 9-12 years after treatment) and at two spatial scales 

(1-m2 quadrats and 0.1-ha plots). 

 Understory diversity generally increased in response to burning but not to thinning 

intensity, though responses of individual plant groups varied with time since treatment and 

spatial scale. Both natives and non-natives had a lagged response to burning, suggesting slow 

colonization via seed or clonal spread. Annuals, however, had an immediate and persistent 

response, reflecting their adaptations to disturbance and suggesting low levels of competition 
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with perennials. Thinning intensity in the absence of burning had little effect on richness, but in 

combination with burning, enhanced local species density (i.e., quadrat-scale richness), 

presumably via effects of increased fuel loads on fire behavior. Post-treatment richness showed a 

strong and persistent correlation with pre-treatment richness, suggesting that most species 

survived disturbance. This study demonstrates there are long-term benefits to thinning and 

burning, but detection relies upon monitoring at sufficient temporal and spatial scales. 

 

1. Introduction 

 

 Ecological restoration seeks to restore the species, structures, and ecological processes 

that defined a system prior to alteration or degradation by humans (Allen et al. 2002, Falk et al. 

2005). Across much of the western U.S., decades of fire exclusion, selective logging, and 

livestock grazing have substantially altered the composition and structure of dry forests with 

historically low- or mixed-severity fire regimes (Agee 1993, Harrod et al. 1999, Hessl et al. 

2004, Wright and Agee 2004, Nacify et al. 2010, Merschel et al. 2014, Odion et al. 2014). 

Increases in the density of fire-intolerant species and in the amount and continuity of fuels have 

heightened risk of high-severity wildfire and insect outbreaks—disturbances that can degrade the 

habitat qualities and ecosystem services of these forests (Everett et al. 1994, Hessburg et al. 

1999, Everett et al. 2000). In Oregon and Washington alone, it has been estimated that 40% of 

dry forests are in need of restoration to reduce these risks (Haugo et al. 2015). Recognizing this 

need, land managers are using mechanical thinning and prescribed burning to reduce fuel loads 

and, ultimately, to restore the structure that characterized these forests prior to fire exclusion 

(Brown et al. 2004, USDA et al. 2004, Agee and Skinner 2005, Martinson and Omi 2013).  
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 A common assumption is that by reducing stand density and reintroducing fire, fuels-

reduction treatments will enhance other attributes of the forest that benefit from more open 

conditions and more frequent fire (Bartuszevige and Kennedy 2009). Although fuels treatments 

are effective at reducing spread of and increasing resilience to high-severity fire (Stephens et al. 

2009, Stephens et al. 2012, Fulé et al. 2012, Martinson and Omi 2013), their ability to achieve 

other ecological objectives is less certain. For example, studies to date show considerable 

variation in the responses of understory diversity to thinning and burning across western North 

America (see reviews and meta-analyses by McIver et al. 2013, Schwilk et al. 2014, Abella and 

Springer 2015, Willms et al. 2017). Many factors may contribute to this variation: initial 

structure, disturbance history, intensity of treatment, physical environment, landscape context, 

and, as I explore in this paper, temporal and spatial scales of observation. For ecological 

responses that are scale-dependent, explicit consideration of time and space can clarify when and 

where variation occurs (White et al. 2010). However, recent reviews of the literature (Abella and 

Springer 2015, L. Urgenson, unpublished data) indicate that few studies explicitly consider the 

joint effects of time and space, and fewer are longitudinal in design (which avoids confounding 

space for time; Pickett 1989, Johnson and Miyanishi 2008, Walker et al. 2010). In this study, I 

use long-term (including pre-treatment) data from a large-scale fuels-reduction experiment to 

demonstrate how temporal and spatial scales of observation influence our understanding of 

thinning and burning effects on understory diversity in dry forests of central Washington. 

 Models of community succession and assembly suggest strong dependence of plant 

diversity on time since disturbance (Noble and Slatyer 1980, Halpern and Spies 1995, Pyke et al. 

2010). Mechanical thinning and prescribed burning are disturbances that can reduce diversity by 

physical damage, burial, or consumption of existing plants, or that can increase it by creating 
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open space, stimulating germination, reducing competition, and enhancing light and soil 

resources. The magnitude and longevity of these effects depend on the severity of disturbance 

and on post-disturbance processes that are time dependent, such as litter accumulation, 

vegetative regrowth, seed dispersal and establishment, and the outcomes of species’ interactions. 

Understory diversity thus integrates biotic and abiotic conditions of the past and present. As 

such, initial responses to disturbance may differ from those a decade later and be poor predictors 

of those of the future. 

 Species richness depends on sampling area (as modeled by species-area curves; Preston 

1962, Palmer and White 1994) because mechanisms that regulate diversity vary with spatial 

scale. At small scales (e.g., meter or sub-meter), resource availability and biotic interactions can 

either constrain or promote it. At larger scales (e.g., tenths to dozens of hectares), diversity 

reflects small-scale mechanisms plus the influences of habitat heterogeneity (Williams 1964, 

Rosenzweig 1995) and chance establishment and extinction events (area per se hypothesis; 

Preston 1962, MacArthur and Wilson 1967). The effects of treatments on diversity among spatial 

scales depend on the extent to which disturbance alters these mechanisms. For example, strong 

responses at small scales suggest that thinning or burning increased resource availability or 

reduced competition, allowing a greater number of species to establish per unit area (i.e., 

increased species density; Fig. 1.1b). Conversely, strong responses at larger but not smaller 

scales suggest that thinning or burning enhanced habitat heterogeneity, allowing for the 

establishment of species with a greater variety of habitat requirements (Fig. 1.1c). 

 By design, restoration treatments in dry forest landscapes are intended to enhance both 

resource availability and habitat heterogeneity. Thinning typically removes smaller stems, 

retaining larger trees in undisturbed patches (Agee and Skinner 2005, Bartuszevige and Kennedy 
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2009) to emulate the structure and spatial patterning of historic forest conditions (Harrod et al. 

1999, Larson and Churchill 2012). Thinning thus results in patchy distributions of soil 

disturbance and residual slash and increased heterogeneity of light and soil resources (Sprugel et 

al. 2009, Grayson et al. 2012). Prescribed burning, alone or in combination with thinning, is 

typically conducted at low severity with the goal of consuming fine woody debris while limiting 

overstory mortality to small trees (Brown et al. 2004, Neary et al. 2005, Bartuszevige and 

Kennedy 2009, Fule et al. 2012). Depending on the continuity of fuels and the intensity or 

duration of heating, the effects of fire on microsite quality and resource availability (e.g., 

exposure of mineral soil or enhancement of available nitrogen) can be highly variable (Wan et al. 

2001, Antos et al. 2003, Neary et al. 2005). At what spatial scales thinning and burning affect 

plant diversity—and how these play out over time—likely depends on the magnitude, spatial 

heterogeneity, and longevity of disturbance effects, and on the pace at which species respond.  

Figure 1.1 Hypothetical diversity responses to restoration 

treatments at contrasting spatial scales. Symbols represent 

unique species. Large-scale richness is the number of unique 

species in each panel; small-scale richness is the mean number 

of species in each sampling unit (small boxes in each panel). 

Compared to (a), (b) contains higher small-scale but not large-

scale richness, whereas (c) contains higher large-scale but not 

small-scale richness. 
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 Plant species’ responses to disturbance are shaped by their life histories (Noble and 

Slatyer 1980, Halpern 1989, Kerns et al. 2006, Harrod et al. 2008, Pyke et al. 2010). Persistence 

through thinning or burning requires that species are able to tolerate damage or burial, high 

temperature or prolonged heating, and abrupt changes in understory microclimate (Nelson et al. 

2007, Pyke et al. 2010). Colonization after disturbance hinges on the availability of propagules in 

the soil or surrounding landscape (reflecting the proximity, abundance, and fecundity of source 

populations), the ability of the propagules to disperse, and the suitability of microsites for 

germination and survival (Kraft et al. 2014). For example, among annuals (and many non-

natives), high fecundity, long-distance dispersal, and maintenance of a soil seed bank confer an 

advantage immediately after disturbance. Gradual loss of germination sites and increasing 

competition with perennials, however, may limit persistence in the longer term. Partitioning 

diversity among groups of species, and examining the spatial and temporal scales over which 

they respond, can help characterize the effects of thinning and burning on the understory plant 

community as a whole. 

 In this study, I use pre- and post-treatment data from the Mission Creek (central 

Washington) site of the national Fire and Fire Surrogate Study to explore plant diversity 

responses to thinning and burning at two spatial scales (1-m2 quadrats and 0.1-ha plots) and two 

times since treatment: early (2 yr) and late (9-12 yr). I expand on early studies that showed 

positive responses to thinning, but not burning (Dodson et al. 2008) and significant species 

enrichment at larger (10 ha), but not moderate (0.1 ha) or smaller (1 m2) spatial scales (Dodson 

et al. 2010). I also explore the spatial and temporal dependence of post-treatment richness on 

thinning intensity and pre-treatment richness (both varied markedly among plots) and on their 

potential interactions with burning. I consider the responses of woody and herbaceous species 
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separately, seeking insight into the latter from the responses of annuals, perennials, natives, and 

non-natives, groups for which I had differing expectations.  

 I posed the following hypotheses of trends in species richness: 

 H1. General responses to thinning and burning. (H1a) I expected herbaceous and woody 

(shrub) species to respond positively to thinning intensity and burning. (H1b) Among herbaceous 

taxa, I expected stronger responses to burning by annuals than perennials and by non-natives 

than natives (groups that respond positively to exposure of mineral soil by fire). (H1c) Among 

species present prior to treatment, I expected greater losses to burning than to thinning. 

 H2. Temporal effects. (H2a) I expected the positive responses of annuals to decline with 

time (with loss of germination sites and increasing competition from perennials). (H2b) In 

contrast, I expected perennials to show a temporal lag in response (reflecting greater seed 

limitation and the slower pace of vegetative spread). 

 H3. Effects of spatial scale.  For all plant groups, I expected stronger responses at the plot 

than at the subplot/quadrat scale (reflecting greater microsite heterogeneity from patchy thinning 

and burning). 

 H4. Roles of pre-treatment richness: (H4a) I expected a strong correlation between pre- 

and post-treatment richness (reflecting the tolerance of most perennial species in this system to 

disturbance). (H4b) I also expected pre-treatment richness to mediate responses to treatments, 

particularly at smaller spatial scales, by allowing for greater colonization in response to treatment 

in species-poor plots or quadrats, as well as greater loss of species from species-rich plots or 

quadrats. 
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2. Methods 

 

2.1 Study area 

 

 The study area is in the eastern Cascade Mountains of central Washington State. It is in 

the Mission Creek watershed (47’25’ N, 120’32’W) of the Okanogan-Wenatchee National Forest 

and was selected to represent dry forests of the interior Columbia River basin for the national 

Fire and Fire Surrogate (FFS) Study (Fig. 1.2; Agee and Lehmkuhl 2009). The experimental 

units range in elevation from 670 to 1,150 m with slopes averaging 15 to 65%. 

 

 Forests are dominated by ponderosa pine (Pinus ponderosa) and Douglas-fir 

(Pseudotsuga menziesii), with small amounts of grand fir (Abies grandis) and western larch 

Figure 1.2 Location of the Mission Creek FFS 

site (star) in Washington State and the 

ecological subregion that it represents (dark 

gray). The site is in the eastern Cascade 

Mountains in the interior Columbia River basin 

(Ecological Subregion 11). From Agee and 

Lehmkuhl (2009). 
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(Larix occidentalis). The most common shrub species are Saskatoon serviceberry (Amelanchier 

alnifolia), common snowberry (Symphoricarpos albus), and rose species and hybrids (Rosa 

spp.). Common species in the herb layer include elk sedge (Carex geyeri), pinegrass 

(Calamagrostis rubescens), heartleaf arnica (Arnica cordifolia), and sweet-cicely (Osmorhiza 

berteroi). 

 Prior to Euro-American settlement, the fire return interval for dry forests of the region 

was approximately 6-7 years; after 1910, it increased to 40 years (Everett et al. 2000). Within the 

study area, fires have been suppressed since the 1930s and there has been cattle grazing and 

logging (USDA 1995). Historic forests (mid-1800s) included ~5 trees/ha > 80 cm in diameter 

(dbh) and ~37 trees/ha of 40-80 cm dbh, whereas current forests contain no trees >80 cm dbh and 

~43 trees/ha of 40-80 cm dbh, with even higher densities of stems <40 cm dbh (Harrod et al. 

1999). Current overstory structure is also less spatially clumped at all scales (Harrod et al. 1999, 

Larson and Churchill 2012). Limited commercial thinning was conducted in the 1970s. 

 The climate is characterized by cool, wet winters and warm, dry summers resulting in 

frequent drought and long periods of low fuel moisture. Representative weather data from Plain 

(570 m elevation), 32 km north of the Mission Creek watershed, indicate average (since 1937) 

low and high temperatures of -2.0 and 2.3°C in the winter and 16.9 and 26°C in the summer. 

Annual precipitation averages 67 cm, of which three-quarters falls as snow between November 

and March. (Western Regional Climate Center, Plain, WA, http://www.wrcc.dri.edu). Among the 

years in which vegetation was sampled, winter precipitation was 54-125% and summer 

precipitation was 55-131% of the long-term average (Fig. 1.3).  

http://www.wrcc.dri.edu/
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2.2 Thinning and burning treatments 

 

 From a larger set of potential management areas, 12, ~10 ha units were selected in 1999 

for inclusion in the study (Fig. 1.4). Two treatments, mechanical thinning and prescribed 

burning, were applied randomly in a balanced factorial design (three replicates of each treatment 

combination): (1) thinning, (2) burning, (3) thinning followed by burning, and (4) no treatment 

(control). In 2012, the Wenatchee Complex wildfire entered four of these units (one thin, one 

burn, and two control; Fig. 1.4), compromising the treatments; all were dropped from the current 

analyses.  

 The silvicultural prescription was thinning from below to a target basal area of 10-14 

m2/ha, allowing 80% of the basal area of dominant or co-dominant trees to survive fire under 

80th-percentile weather conditions. Both small commercial and smaller, unmerchantable stems 

were cut. Merchantable tree boles were yarded by helicopter and branches and tops were left on 

Average 

Figure 1.3 a) Winter (October-April) and b) summary (May-September) precipitation prior to 

and during the study period at the nearest representative weather station (Plain, WA). Gray 

bars indicate years of vegetation sampling. Dotted lines are the 1937-2016 (79-year) averages. 
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site. Tree were retained in a clumped fashion, consistent with historical spatial patterning 

(Harrod et al. 1999). Although the basal area target was not met in more than half of the thinned 

units, thinned units experienced greater reductions in live basal area and density than did 

unthinned units (Table 1.1). Thinning was completed in 2003 and burning in four of six units 

was conducted in the spring of 2004. Due to high fuel moisture, fires charred only 23-51% of the 

soil surface and failed to meet most fuel reduction objectives (Agee and Lolley 2006). Burning 

was delayed until 2006 in the remaining two units; they charred 50-65% of the soil surface. 

Burns were generally patchy and variable in intensity. 

 

 

 

 

Figure 1.4 Geographical distribution and treatment assignments 

of the 12 management units selected for the experiment. The 

dotted polygon is the area affected by a 2012 wildfire; it includes 

the four units excluded from data analysis. 
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Table 1.1 Overstory attributes of the eight experimental units at each sampling date. Attributes 

are mean, plot-level, live density (Den, trees/hectare), basal area (BA, m2/hectare), stand density 

index (SDI; √(Den*BA)), and the absolute and percent loss of SDI relative to pre-treatment. 

 

  Pre-treatment  2 years post-treatment  9-12 years post-treatment 

Unit Treatment Den. BA SDI  Den. BA SDI loss SDI loss (%)  Den. BA SDI loss SDI loss (%) 

Crow 3 Control 488 33 126  485 34 -2 -1  415 35 7 6 

Crow 1 Thin 492 30 120  127 12 82 67  122 15 79 65 

Ruby Thin 532 39 142  227 25 67 46  242 30 59 41 

Spromberg Burn 493 32 125  485 34 -2 -2  477 38 -9 -7 

Pendleton Burn 352 23 89  322 24 2 0  257 22 15 17 

Camas Thin + Burn 588 34 139  190 18 81 61  170 18 85 61 

Tripp Thin + Burn 937 36 183  423 23 86 46  392 25 83 46 

Crow 6 Thin + Burn 488 29 119  95 10 89 74  88 11 87 74 

 

 

2.3 Sampling of vegetation and ground-surface conditions 

 

 Sampling was conducted before treatment and at two post-treatment sampling dates.  

Wenatchee National Forest staff conducted the sampling before treatment (2000 or 2001) and 

two growing seasons after treatment was completed (2005 for six units, 2007 for two units 

burned in 2006). The author led resampling in 2015 (9-12 years after treatment). I refer to these 

sampling dates as “pre-treatment”, “early post-treatment”, and “late post-treatment”, 

respectively. Sampling occurred between May and August; sites were visited sequentially from 

the lowest to the highest elevation. 

 Each experimental unit was sampled with six permanent 50 m x 20 m modified-

Whittaker plots (Fig. 1.5). Plots were established in 2000, randomly located within continuous 

overstory vegetation and stratified among the dominant plant associations within each unit. In 

each plot, all coniferous trees >7.6 cm dbh were tagged and measured for diameter. Shrubs 

(defined as non-coniferous woody plants) were sampled in each of ten, 10 m x 5 m subplots 
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centered on the long axis of the tree plot (Fig. 1.5). Herbaceous species (forbs and graminoids) 

were sampled within 20 permanent 1-m2 quadrats distributed in a stratified random fashion 

throughout the tree plot. 

  At each measurement date, cover (%) of each vascular plant species was estimated in 

each quadrat (herbaceous species) or subplot (shrubs). The “raindrop method” was used to 

estimate cover, discounting spaces between branches and leaves. If two species overlapped, 

cover was estimated for the taller species (thus the summed cover of species could not exceed 

100%). Herb quadrats were also used to estimate the cover (%) of ground-surface conditions, 

including bare (mineral) soil, rock, duff/litter, and tree boles. 

 

 

 

 

Figure 1.5 The nested sampling design in each experimental unit. 

Overstory trees were measured in each of the six plots. Cover of 

individual shrub species was recorded in 10 subplots. Cover of 

individual herbaceous species was recorded in each of 20 

quadrats. 
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2.4 Species identification and data processing  

 

 Plants that could not be identified in the field were collected and identified, if possible, in 

the lab. Several taxa that could not be reliably identified to species (or consistently identified 

among sampling dates) were treated as morphospecies or grouped at the genus level. This 

included two shrubs, seven forbs, and one grass (Appendix). In total, 94 herbaceous records 

(0.1% of the total) remained unidentified over the course of study; given their low frequency, 

these records were removed prior to analysis. Vouchers of unknown and difficult-to-identify 

species in 2015, as well as an informal guide to distinguishing among similar taxa in the study 

area, are stored in the Halpern lab at the University of Washington, Seattle. Nomenclature 

follows USDA Plants (USDA and NRCS 2017).  

 The full set of pre- and post-treatment data were checked for data-entry errors and 

consistency in coding and identification. I took a conservative approach to the latter. Taxa that 

are morphologically similar were compared among sampling dates. Identifications from the same 

plot that differed for one of the three sampling dates were candidates for correction; changes 

were made if other similar taxa were not present in the plot on the same sampling date. When 

multiple species from the same genus were present and identities changed over time, all records 

were reduced to the genus level.  

 I classified taxa by life form (shrub vs. herbaceous), longevity (annual vs. perennial, and 

origin (native vs. non-native) using information from the USDA Plants online database (USDA 

and NRCS 2017) or, for morphospecies, from field observations. Biennial species were treated as 

annuals. Taxa recorded at the genus level were treated as perennials if the taxon included both 
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annual and perennial species in the study area (three genera in total). Records for the genus 

Trifolium, which could be native or non-native, were treated as native. 

 

2.5 Statistical analysis 

  

 To provide abiotic and biotic context for hypothesis testing, I summarized the effects of 

thinning and burning on exposure of bare ground and on vegetative cover. At each sampling 

date, I calculated the mean and standard deviation of percent cover of i) bare ground, ii) shrubs, 

and iii) herbaceous vegetation among the subplots or quadrats in each plot. These data served to 

evaluate how the availability and heterogeneity of bare space and the local competitive 

environment (represented by vegetative cover) changed with treatment and over time. I also 

summarized the total species richness sampled during the study and richness trends over 

temporal and spatial scales. 

 Hypotheses were tested using linear mixed-effects models. Response variables were post-

treatment richness of each of eight plant groups at each of two sampling dates (early and late) 

and two spatial scales (plot and quadrat or subplot). Plot-level richness is the total number of 

unique shrub or herbaceous species sampled among the 10 subplots or 20 quadrats per plot, 

respectively. Subplot or quadrat richness is the mean number of species per quadrat or subplot in 

each plot. In addition to the six life form, longevity, and origin groups, I developed two 

additional plant groups to explore the extent to which species colonization and loss (local 

extirpation) contributed to net changes in herbaceous richness: herbaceous species that were not 

present pre-treatment but appeared post-treatment (“colonizers”) and those that were present pre-

treatment but disappeared post-treatment (“extirpated”). 
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 Restoration treatments were represented in models by a continuous variable for thinning 

(thinning intensity) and a categorical variable for burning (yes/no). I used a quantitative variable 

for thinning because the intensity of thinning conducted in each plot varied a good deal across 

the experiment. This occurred because thinning was performed to a target basal area but pre-

treatment overstory structure varied considerably among plots. Thinning intensity was expressed 

as the change from pre-treatment to 2 years post-treatment in stand density index (SDI change). 

SDI was calculated as the square root of the product of live density and basal area in each plot. 

Although some proportion of SDI change may be attributed to effects of burning or other sources 

of mortality, only thinned plots (both burned and unburned) showed substantial change (Fig. 

1.6). Thinning intensity values were converted to z-scores prior to analysis so that coefficients 

could be interpreted as effect sizes and compared within models. 

 Effects of burning also varied substantially within and among experimental units (Agee 

and Lolley 2006). Because I lacked a sufficient measure of fire severity in the understory (e.g., 

duff consumption; Webster and Halpern 2010) I treated burning as a categorical variable, 

assigned at the scale of plots. All plots within an experimental unit were categorized as burned or 

unburned (per the original treatment designation) except for one plot in a burned unit that 

inadvertently fell outside the prescribed fire boundary and was classified as unburned. 

 In each model, pre-treatment richness of the modeled plant group was included as a 

covariate to account for its influence prior to testing for treatment effects, and to test its 

hypothesized role in the post-treatment response (H4a and H4b). For models of species’ 

colonization and loss, I used pre-treatment richness of herbaceous species to test the dependence 

of these processes on initial richness (hypothesis 4b). Pre-treatment richness values were 

converted to z-scores prior to inclusion in models.  
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  One model was fit for each date, spatial scale, and plant group for a total of 32 models. 

Each response variable was modeled as a function of pre-treatment richness, thinning intensity, 

burn treatment (yes/no), and all two- and three-way interactions (a total of seven fixed effects). 

Experimental unit was included as a random effect influencing the intercept. Interactions with 

significance levels (p) > 0.1 were iteratively removed from each model to maximize statistical 

power, beginning with the highest-order term. However, the thinning intensity × burning term 

was retained to test for the treatment interaction implicit in the original experimental design. 

Terms lower in order than the highest-order interaction term that was retained (i.e., main effects 

and, possibly, two-way interactions) were kept in final models no matter their significance level. 

 Effect sizes of treatments or treatment interactions were represented by parameter 

estimates (regression coefficients) and were compared within but not among models. 

Comparisons among plants groups and among spatial or temporal scales within a plant group 

were based on the significance levels of parameter estimates. An alpha of 0.05 was chosen a 

Figure 1.6 Change in stand density index 
(pre- to 2 years post-treatment) in thinned 

and unthinned plots. Burning treatment is 

indicated by symbol fill. 
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priori as the basis for significance. I did not adjust the alpha level for multiple tests (32 models 

in total) but took several measures to strengthen the bases for inferences. First, I placed greater 

emphasis on the consistency of model results among multiple plant groups and scales than on 

results of individual models. Second, I focused on effects with lower p-values, recognizing the 

reduced probability of erroneously rejecting the null hypothesis for a least one term at an alpha 

of 0.05 (30% chance) vs. 0.01 (7% chance). Nevertheless, with 32 models (each initially fit with 

seven fixed-effect terms) and an alpha of 0.05, it was almost certain that at least one model term 

showed spurious significance (Gelman et al. 2012). Finally, I used Type III (marginal) sums of 

squares to calculate test statistics, which is inherently the most conservative distribution of 

variance among model terms because variance shared among terms is entirely excluded. 

 Models were developed in R (version 3.3.0; R Core Team 2016) using the nlme package 

(version 3.1-127; Pinheiro et al. 2016). Final models were parameterized by maximizing the 

restricted log-likelihood. I tested for collinearity using variance inflation factors; all were below 

two, suggesting low problematic correlation among main effects. To ensure model assumptions 

were met, residuals of final models were visually examined for normality and homogeneity 

across predictor values (Zuur et al. 2009). In the nine models in which residuals were not 

randomly distributed, outliers (observations with standardized residuals < -2 or > 2) were 

removed, resulting in residual distributions that met model assumptions. The nine models were 

late post-treatment plot-level non-natives, early and late plot-level extirpated species, and early 

and late quadrat-level annuals, non-natives, and extirpated species. Removal of outliers slightly 

reduced the degrees of the freedom. 
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3. Results 

 

3.1 Effects of thinning and burning on exposure of bare ground and total plant cover 

 

 The mean and variation (SD) in cover of bare ground initially increased in some burned 

plots, particularly at higher thinning intensity (Fig. 1.7). Effects were short-lived, however. 

Thinning intensity alone had no effect on cover of bare ground. 

 Cover of shrub and herbaceous species varied considerably among plots before treatment 

(Fig. 1.8). Thinning and burning resulted in persistent reductions in both the mean and variation 

in cover, particularly for herbs. Field observations suggest very little post-treatment tree 

establishment. 

 

3.2 Total richness among plant groups 

 

 In total, 151 taxa were recorded over the course of study among the 480, 50-m2 shrub 

subplots and 960, 1-m2 herbaceous quadrats. Of these, 100 (66%) were observed before 

treatment, 131 (87%) at the early post-treatment sampling date, and 138 (91%) at the late post-

treatment sampling date. Richness of most plant groups, except shrubs, increased over time (Fig. 

1.9). Among herbaceous species, there were considerably more perennials than annuals and more 

natives than non-natives (Fig. 1.9). Twelve taxa (8%) were non-native; all of these were 

herbaceous and eight were annual or biennial. 

. 
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Figure 1.7 Pre-, early post-, and late post-treatment cover (%) of 

bare ground as a function of thinning intensity (SDI change) and 

burn treatment (n = 48 plots). Points are (a) means and (b) standard 

deviations of the 20, 1-m2 quadrats per plot. Filled circles are 

burned plots; open circles are unburned plots. 

Figure 1.8 Pre-, early post-, and late post-treatment cover (%) of all 

(a) shrub and (b) herbaceous species as a function of thinning 

intensity (SDI change) and burn treatment (n = 48 plots). Points are 

the means of the 10 shrub subplots or 20 herbaceous quadrats per 

plot. Filled circles are burned plots; open circles are unburned plots. 
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3.3 General trends in richness of shrub and herbaceous species 

 

 Richness of shrub and herbaceous species varied considerably within and among plots 

both before and after treatment (Fig. 1.10). Relative to the plot scale (i.e., among all 10 subplots 

or 20 quadrats in each plot), individual subplots supported ~50% of shrub species and individual 

-quadrats supported ~25% of herbaceous species. Per plot, shrub richness ranged from 3-20 and 

herbaceous richness range from 6-35. Prior to treatment there was a strong negative correlation 

between plot-scale herbaceous richness and subsequent thinning intensity (the latter was strongly  

Figure 1.9 Changes over time in the total observed 

richness of plant groups defined by life form, 

longevity, and origin. Values are based on 480 

subplots (50 m2) for shrubs and 960 quadrats (1 m2) 

for all herbaceous groups. 
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Figure 1.10 Pre-, early post-, and late post-treatment richness of (a, 

b) shrubs and (c,d) herbaceous species at each of two spatial scales 

as a function of thinning intensity (SDI change) and burn treatment. 

Filled circles are burned plots; open circles are unburned plots. 
Regression lines represent significant relationships between 

richness and treatment(s), with dashed and solid lines representing 

those of burned and unburned plots, respectively. 

a) 

b) 

c) 

d) 
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correlated with pre-treatment SDI; Fig. 1.10c). After treatment, plot-scale herbaceous richness 

was unrelated to thinning intensity (Fig. 1.10c) 

 

3.4 Tests of hypothesized responses to thinning intensity, burning, and pre-treatment richness 

 

H1. General responses to thinning and burning. 

 H1a. I hypothesized that shrub and herbaceous species richness would increase with 

thinning intensity and burning. Post-treatment responses were consistent, in part, with this 

expectation. Burning had a positive effect for most plant groups, but the size and significance of 

these effects were contingent on time and spatial scale (Figs. 1.11, 1.12, Table 1.2; see details in 

H2 and H3). In contrast, thinning intensity enhanced richness only when combined with burning 

and, often, effects were only marginally significant (Table 1.2). 

 H1b. Among herbaceous taxa, I expected stronger responses to burning by annuals and 

non-natives than by perennials and natives. Responses were largely consistent with expectations: 

annuals showed positive responses to burning at both spatial scales and at one or both sampling 

dates while perennials did not respond to burning (Fig. 1.11, Table 1.2). Both natives and non-

natives showed positive responses to burning, but non-natives only at the quadrat scale. For 

many plant groups, the effects of burning were enhanced by increasing intensity of thinning, 

particularly at the late post-treatment date and at smaller spatial scales. 

 H1c. I expected greater loss of herbaceous species to burning than to thinning, but there 

was little evidence of this effect. At the plot scale, species’ loss did not vary with thinning 

intensity or burn treatment. Instead, loss correlated only with pre-treatment richness: loss was 

larger in plots with greater initial richness (Fig. 1.12, Table 1.2). At the quadrat scale, the  
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Table 1.2 Significance of fixed effects in linear mixed models of post-treatment richness at 

contrasting spatial scales, plot (P) vs. subplot (S) or quadrat (Q); and times since treatment, early 

(2 yr) vs. late (9-12 yr). Separate models were run for species of differing life forms, longevities, 

origins, and temporal behaviors. All groups other than shrubs include only herbaceous species. 

Bold font indicates statistical significance at α = 0.05 and underline indicates marginal 

significance (0.05 < p < 0.1). Dashes denote interaction terms that were not included in final 

models. Spatial scales differ for shrubs (10, 50 m2 subplots per 0.1 ha plot) and herbs (20, 1 m2 

quadrats per 0.1 ha plot). Numerator and denominator degrees of freedom (df) are 1 and 36, 

except for models with significant interactions with pre-treatment richness or from which outliers 

were dropped. 
 

Plant group Pre- richness  Thin intensity  Burn  

Thin intensity 

× Burn 

 
Pre- richness × 

Thin intensity 

 
Pre- richness  

× Burn   

(Spatial scale) Early Late  Early Late  Early Late  Early Late  Early Late  Early Late 

Life form                  

Shrubs (P) <0.001 <0.001  0.44 0.59  0.42 0.02  0.003 0.12       

Shrubs (S) <0.001 <0.001  0.43 0.97  0.26 0.02  0.005 0.01       

Herbaceous (P)  <0.001 0.005  0.68 0.75  0.67 0.02  0.57 0.10       

Herbaceous (Q) <0.001 <0.001  0.89 0.60  0.91 0.05  0.22 0.08       

Longevity                  

Annuals (P) <0.001 <0.001  0.25 0.97  0.01 <0.001  0.38 0.21       

Annuals (Q)*‡ <0.001 <0.001  0.14 0.15  0.31 <0.001  0.20 0.01  0.05    <0.001 

Perennials (P) <0.001 0.002  0.07 0.45  0.23 0.18  0.97 0.26       

Perennials (Q) <0.001 <0.001  0.18 0.11  0.42 0.25  0.62 0.41       

Origin                  

Natives (P) <0.001 0.003  0.46 0.86  0.57 0.02  0.96 0.12       

Natives (Q) <0.001 <0.001  0.93 0.57  0.72 0.07  0.28 0.09       

Non-natives (P)‡ 0.28 0.098  0.70 0.77  0.06 0.13  0.17 0.08 
      

Non-natives (Q)*†‡ 0.11 0.92  0.68 0.68  0.14 <0.001  0.17 <0.001  0.03 0.53   <0.001 

Temporal behavior                  

Colonizing (P) 0.81 0.85  0.36 0.70  0.48 0.03  0.90 0.18       

Colonizing (Q) 0.56 0.99  0.43 0.90  0.74 0.04  0.18 0.09       

Extirpated (P)‡ <0.001 <0.001  0.93 0.89  0.80 0.49  0.78 0.77       

Extirpated (Q)*‡ <0.001 0.004  0.33 0.12  0.44 0.92  0.36 0.90  0.005   0.01  

* Inclusion of each pre-treatment richness × treatment interaction term reduced the denominator df by 1. 

† The late model included a three-way interaction term (p = 0.003). Inclusion of the pre-treatment richness × 

burning and three-way interaction terms reduced the denominator df by 2. 

‡ Exclusion of outlier(s) reduced denominator df by 1 to 3. 
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Figure 1.11 Parameter estimates (i.e., regression coefficients) and 95% CI of fixed effects in 

linear mixed models of post-treatment richness as a function of pre-treatment richness (Pre), 

thinning intensity (TI), burning (B), and two-way interactions. Estimates are significant (α = 

0.05) if error bars do not cross 0 (see p-values in Table 1.2). Only terms retained in final models 

(following iterative elimination of non-significant interactions with pre-treatment richness) are 

displayed. Each panel contains the results of two models (early and late post-treatment) for a 

plant group at a single spatial scale, plot (P) or subplot (S)/quadrat (Q). Early post-treatment 

estimates are open circles; late post-treatment estimates are filled circles. 
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Figure 1.12 Parameter estimates (i.e., regression coefficients) and 95% CI of fixed effects in 

linear mixed models of post-treatment richness as a function of pre-treatment richness (Pre), 

thinning intensity (TI), burning (B), and two-way interactions. Estimates are significant (α = 

0.05) if error bars do not cross 0 (see p-values in Table 1.2). Only terms retained in final models 

(following iterative elimination of non-significant interactions with pre-treatment richness) are 

displayed. Each panel contains the results of two models (early and late post-treatment) for a 

plant group at a single spatial scale, plot (P) or subplot (S)/quadrat (Q). Early post-treatment 

estimates are open circles; late post-treatment estimates are filled circles. 
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correlation of loss with thinning and with burning was contingent on pre-treatment richness, 

although these effects were short-lived (see details in H4b). 

 

H2. Temporal effects 

 H2a. I expected positive responses of annuals to decline with time. Temporal trends ran 

counter to expectation: at the plot scale, the strength of the burn effect increased with time, and 

at the quadrat scale, the effect was non-significant at the early post-treatment date but became 

highly significant at the late date (Fig. 1.11, Table 1.2). 

 H2b. In contrast to annuals, I expected perennials to show a lagged response to 

treatments. In fact, responses were limited to marginally significant and transient increase with 

thinning intensity (Fig. 1.11, Table 1.2). 

 

H3. Effects of spatial scale 

 I expected stronger responses at the plot than at the subplot/quadrat scale. Support for this 

hypothesis varied among plant groups and sampling dates. For example, for herbaceous and 

native species I detected significant responses to burning at the plot (but not the quadrat) scale, 

though this was limited to the late sampling date (Table 1.2). For annuals and non-natives, I 

detected significant or marginally significant responses at the plot (but not the quadrat) scale at 

the early sampling date, but responses became highly significant at the quadrat scale at the late 

sampling date (Table 1.2). Further, it was more often at smaller spatial scales that thinning 

enhanced the effects of burning (e.g., shrubs, annuals, and non-natives; Table 1.2). 
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H4. Relationships to pre-treatment richness  

 H4a. As I hypothesized, there was a strong correlation between pre- and post-treatment 

richness in all plant groups (except non-natives). Although pre-treatment richness remained a 

significant predictor of richness in the late post-treatment period, the effect size declined relative 

to burning. 

 H4b. I expected responses to treatments to be mediated by pre-treatment richness such 

that species-poor plots and quadrats would gain more species and species-rich areas would lose 

more species. Counter to expectation, treatment responses of most plant groups, including 

colonizers, were unaffected by initial richness (non-significant interactions with pre-treatment 

richness; Table 1.2). For annuals and non-natives, the effect sizes of the significant interactions 

between pre-treatment annual or non-native richness and thinning were very small, and the 

direction of the significant interactions with burning were opposite of that expected: plots with 

initially greater local density (quadrat-scale richness) gained more species that did plots with 

lower density (Fig. 1.11, 1.12). However, species loss from quadrats was contingent on initial 

conditions: plots with greater local species density lost more species as thinning intensity 

increased; with burning, however, plots with lower local species density lost more species (Fig. 

1.12, Table 1.2). Both of these effects were transient. 

 

4. Discussion 

 

 Previous studies have shown positive, negative, and neutral responses of understory 

vegetation to thinning and burning (e.g., Metlen et al. 2004, Collins et al. 2006, Dodson et al. 

2008, Strahan et al. 2015, Willms et al. 2017). Some have documented how responses change 
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over time or with the spatial scale of measurement (e.g., Dodson and Fielder 2006, Harrod et al. 

2008, Dodson and Peterson 2010, Webster and Halpern 2010), but none have considered both 

the spatial and temporal aspects of this variation. The current study, based on longitudinal data 

from a large-scale restoration experiment, clearly illustrates that the spatial and temporal scales 

at which observations are made can influence our interpretation of the effectiveness of these 

treatments. Although species richness was enhanced by burning, there was a temporal lag in the 

effect, attributable to the gradual colonization and persistence of native annuals. I also found that 

the timing and strength of burning effects varied with spatial scale, reflecting time-dependent 

increases in the local density of both native and non-native species. This study demonstrates that 

there are long-term benefits to thinning and burning, but detection relies upon monitoring at 

sufficient temporal and spatial scales. 

 

4.1 Overall trends in richness 

 

 Understory richness of the study area was dominated by herbaceous rather than woody 

species, which make up more than 80% of vegetative biodiversity in forests across North 

America (Gilliam et al. 2007), and even more in conifer forests (Halpern and Spies 1995). 

Increasing total herbaceous richness over time reflects enhancement of a critical component of 

local biodiversity. Although some of this increase may be due to improved knowledge of local 

flora by sampling personnel or to favorable weather, I attribute the majority to colonization by 

new species as a result of treatment for several reasons. First, richness increased more in treated 

units than in untreated units. Second, I took measures to ensure consistent identification over 

time to avoid mistaken additions to species lists. Finally, while annual variation in weather may 
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affect diversity, with wetter weather thought to enhance emergence of annual species, seasonal 

precipitation of the late sampling year was lower than or comparable to the other sampling years, 

so that diversity was likely tempered by the weather rather than enhanced. 

 Conversely, total richness of shrubs did not change over time (while shrub richness in 

treated units did), perhaps reflecting a smaller regional species pool that was effectively captured 

at each sampling period by the 10, 50-m2 subplots used to sample shrubs (compared to the 20, 1-

m2 quadrats used to sample herbaceous plants). This differential sampling effort may also have 

contributed to the less spatially dynamic diversity responses by shrubs in this study. 

 

4.2 Lagged enhancement of herbaceous richness to burning 

 

 Richness of herbaceous species showed a lagged increase with prescribed burning. The 

mechanisms underlying this response can be inferred from the dynamics of colonization and 

extirpation. Early (two-year) post-treatment richness represented the net effect of species loss to 

disturbance and short-term colonization, whereas late post-treatment richness reflected the 

cumulative establishment (or re-establishment) of species over a considerably longer period of 

time (7-10 years). The lagged response could thus be due to (i) significant turnover in the short-

term and/or (ii) delayed colonization. Evidence of turnover was contingent on spatial scale. 

Species loss at the plot scale was low and did not differ among treatments (experiment-wide 

mean of 2.5 or 12% of species). However, at the quadrat scale, losses were contingent on 

treatment and initial richness. Losses were greater in thinned plots where the local density of 

species was greater and thinning intensity was higher, but in burned plots where the local density 

of species was lower. Overall losses among quadrats were low, however, averaging 0.97 or 22% 
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of species. Thus, although species’ turnover was more dynamic at smaller spatial scales, at 

neither scale was there sufficient extirpation of species to explain the delay in the positive 

response to burning. The strong correlation between pre- and early post-treatment richness 

provides further evidence of the relatively high rates of species survival, or rapid recovery, after 

burning (as observed in other studies of post-fire recovery in western forests; e.g., Halpern 1989, 

Halpern and Spies 1995, Harrod et al. 2008). Although species vary in their sensitivity to fire 

(Pyke et al. 2010) and the likelihood of extirpation varies with abundance, the low severity and 

patchy distribution of burning in this experiment (Agee and Lolley 2006) resulted in minimal 

species loss. 

 Consequently, the delayed total herbaceous response to burning reflects the relatively 

slow rates of species colonization. Results among plant groups indicate that annual species were 

the primary contributors to the lagged colonization; in fact, seven of the ten most frequent late 

colonizing species were annuals (Appendix B). This was unexpected. Post-disturbance 

successional theory predicts a decline in disturbance-adapted species with the expansion of 

competitive species over time and transient soil nutrient enhancement (Noble and Slatyer 1980, 

Monleon et al. 1997, Neary et al. 2005). Thus, I expected a decline in annual richness over time 

as the abundance of suitable germination sites declined and competition with perennial herbs and 

shrubs increased. Indeed, cover of bare ground decreased during this time period; however, cover 

of competing species did not show a detectable increase. Following large-scale disturbance in 

more productive west-side systems, perennials rapidly expand outcompeting annuals (Halpern 

and Spies 1995). In contrast, perennial expansion in this study may have been limited by higher 

levels of stress and the variable and often lower-than-average precipitation between the early and 

sampling dates (Fig. 1.3). Annuals, meanwhile, colonized an increasing number of quadrats and 
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plots. Early colonization after treatment likely enhanced local seed production (propagule 

pressure), thus promoting the expansion of annual populations within and among plots (Halpern 

1989, Halpern et al. 1997), despite the decline in bare ground. 

 Unlike the lagged response, I expected the immediate response of annuals to burning. 

Previous studies have shown positive responses to fire among annuals in the short-term 

(Laughlin et al. 2004, Moore et al. 2006, Webster and Halpern 2010). I predicted that annuals 

would respond positively to the exposure of mineral soil from burning. Indeed, richness 

responses were consistent with transient increases in bare ground (Fig. 1.7). However, bare 

ground exposure was variable, suggesting that the creation of open space by burning did not 

occur homogeneously within each plot. This likely to only occasional initial colonization within 

plots and the observed early response at the plot but not the quadrat scale. 

 In addition to the availability of germination sites, colonization by annuals in the short-

term required that propagules survived fire in situ or quickly dispersed after treatment. Seed 

survival through fire depends on the thickness of the seed coat and the soil depth at which the 

seed located (Pyke et al. 2010). Adaptations among annual species such as seed polymorphism 

(i.e., variation in seed size and dormancy) or seed-banking (i.e., storing seeds in the soil) enhance 

the likelihood that seeds will survive fire and subsequently germinate (Syminoides 1988). 

However, despite findings that seed-banking is common among post-fire colonizers (Donato et 

al. 2008), including the most frequent colonizer in this study, Claytonia perfoliata (Matthews 

1993), some studies have not found buried seeds to contribute substantially to post-fire 

recruitment (Vose and White 1987, Wienk et al. 2004). Nonetheless, the mild and patchy fire 

behavior in this study likely limited seed exposure to lethal temperatures (Vose and White 1987, 
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Agee and Lolley 2006, Knapp and Keeley 2006), enabling the survival and germination of many 

annual seeds. 

 In addition to existing propagules, post-fire colonization could result from seeds 

dispersed from outside the sampling area. Rapid time to reproduction and long-distance dispersal 

are important characteristics of many annuals (Syminoides 1988) that contribute to species’ 

abilities to disperse seeds immediately into disturbed areas (Donato et al. 2008). Indeed, 

Collomia grandiflora, a frequent colonizer in this study (Appendix B), produces non-opening, 

self-pollinating (cleistogamous) flowers that ensure rapid seed production following disturbance 

(Johnson and Wilken 2017). Seeds of other frequent colonizers were equipped for wind (Bromus 

carinatus and Epilobium brachycarpum; Tollefson 2006) or animal dispersal (Cryptantha 

torreyana). Source populations may have been located near or far from sample plots, but earlier 

work on this study reported that few colonizing species were present in the nearby meadow areas 

(Dodson et al. 2008). Rainfall events and hydrologic flow play large roles in the dispersal of seed 

in semi-arid environments (Speight 1980, Teckenberg 2003, Stella et al. 2006, Rhodes et al. 

2014), so the rugged landscape setting of this experiment and dry weather patterns may have 

played a substantial role in local seed distribution, both restricting and facilitating dispersal.  

 In contrast to the strong responses by annual species, richness of perennials was not 

enhanced by burning. I hypothesized that perennials would show a positive response to burning 

that was slow to develop due to the regenerative constraints of species in this group (e.g., low-

level seed production, dispersal limitation, and slow or no clonal growth). It appears that these 

hypothesized limitations remained in effect throughout the sampling period. Others have shown 

similar insensitivity among perennials for as many as five (Kerns et al. 2006) to 20 years after 

treatment (Webster and Halpern 2010). These authors suggest that it may not be possible to 
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generalize among perennials due to the diversity of their life histories (including regenerative 

strategies) and responses to disturbance. Indeed, varying capacities among perennial species in 

propagule arrival and vegetative spread following disturbance have long been recognized (Noble 

and Slatyer 1980, Keeley 1981, Halpern 1989, Harrod et al. 2008, Pyke et al. 2010, and 

references therein). While some perennial species in this study colonized a substantial number of 

plots (Appendix B), total richness of this diverse group did not respond to burning. 

 

4.3 Limited responses to thinning intensity in the absence of burning 

 

 In contrast to expectations, thinning intensity alone did not have a significant effect on 

richness at any spatial or temporal scale. I expected thinning to increase the availability of light 

and below-ground resources and, through ground disturbance associated with felling and 

yarding, to create germination sites for colonization. In fact, bare ground increased little with 

thinning over pre-treatment levels (Fig. 1.7); indeed, thinning of the treatment units (with 

yarding by helicopter) was observed to generated little soil disturbance relative to typical 

thinning activities (Boerner et al. 2009). Further, thinning considerably increased fuelbed depths 

and 10-hr fuel loads (Agee and Lolley 2006), suggesting that slash buried understory vegetation 

and covered bare ground. The lack of germination sites may have negated the benefits of 

increased resource availability. Other experiments have found increased species richness with 

higher thinning intensity (Thomas et al. 1999, Zenner et al. 2006), but Thomas et al. (1999) 

observed that understory diversity responses to thinning intensity were not simply reactions to 

concurrent canopy cover or understory light availability; rather, the slow accumulation of 

benefits from resource release and the recovery from trampling and burial caused lags in 
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understory responses. Perhaps similar benefits in this study are yet to be realized. Or, benefits 

were accrued solely by species already present in the sampling areas, with burial and lack of soil 

exposure limiting colonization by new species. 

 When accompanied by burning, however, higher thinning intensities led to richness 

increases for many groups. I suggest this is due to slash created from thinning that increased the 

amount of fuel available to burn (Agee and Lolley 2006), leading to higher fire intensity and/or 

duration of burning, exposure of mineral soil, and resource modification within plots. Indeed, 

exposure of bare ground was highest in burned plots with high thinning intensities. While this 

enhancement of burning effects by thinning occurred only late post-treatment for herbaceous 

species, shrub species responded at the early as well as the late post-treatment sampling date. 

While their above-ground structures may have been consumed by fire, most in situ shrubs 

persisted, as evidenced by little to no decline in subplot frequencies of species (Appendix B). I 

suggest this response was enabled by the ability of many shrubs to resprout from rhizomes or 

root crowns, as exhibited by the three most common species in the experiment: Rosa spp., 

Symphoricarpos albus, and Amelanchier alnifolia (Reed 1993, Fryer 1997, McWilliams 2000, 

Hauser 2006). Subsequent seed dispersal or rhizomatous spread into open areas by these species, 

and the emergence of others from the seed bank (such as common colonizers Ceanothus 

sanguineus and Sambucus nigra ssp. cerulea; Appendix B; Crane 1989, Johnson 2000), likely 

led to the early richness responses of shrubs as compared to herbaceous species. 
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4.4 Small increases in local species density of non-natives 

 

 Non-natives can threaten ecosystems by outcompeting natives, reducing habitat quality, 

and altering disturbance regimes. Creating conditions favorable to non-natives is a common 

concern with using fire as a restoration tool (Keeley 2006). Unfortunately, enhancement of non-

natives has emerged as a common theme of both restoration thinning and burning (Nelson et al. 

2008, Willms et al. 2017). Some studies have observed low-level increases in non-natives with 

restoration treatments (Abella and Covington 2004, Nelson et al. 2008), while others reported 

more moderate increases (Dodson and Fielder 2006, Metlen and Fiedler 2006). 

 In this study, non-native richness responded positively to burning. Significant responses 

occurred at small scales and the late sampling date. While these responses indicate an increase 

over time in the density of non-native species, richness increases were small, and the presence of 

non-native species throughout plots and quadrats was a fraction of that of native species. The 

most common late post-treatment colonizer was Bromus tectorum, which occurred in one-third 

of all plots by the late sampling date but was present in only 4% of quadrats (Appendix B). The 

likelihood of this species altering the fire regime in this dry forest, as it has in sagebrush 

communities across the western U.S., is minimal. Tragopogon dubius, the second-most common 

late colonizer, was extirpated from almost as many plots as it colonized. The presence of this 

annual/biennial species was temporally and spatially dynamic; its frequent colonization does not 

indicate an invasion. Furthermore, native species also responded positively to burning, showing 

that burning did not favor non-natives over natives. 
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4.5 Little mediation of treatment effects by pre-treatment richness 

 

 In addition to statistically accounting for pre-existing variation among plots, I used a pre-

treatment richness covariate in models to evaluate hypotheses about the mediation of treatment 

effects by pre-treatment conditions. I found few instances of treatment mediation by pre-

treatment richness. In fact, the nature of the interaction with burning ran counter to expectation: 

burned plots with initially greater local density of annual and non-native species had greater 

post-treatment colonization by annuals and non-natives, and burned plots with greater 

herbaceous density lost fewer herbaceous species. This suggests that these higher diversity plots 

were favorable locations for annuals and non-natives both before and after burning. It appears 

that burning did little to diminish habitat quality for these groups nor improve it for perennial 

colonization, a finding consistent with reports that post-disturbance richness is largely driven by 

unchanging environmental variables (e.g., slope, aspect; Metlen et al. 2004, Nelson et al. 2008). 

This result also suggests that a rich local plant community can readily provide propagules 

following disturbance, perhaps contributing to enhanced long-term resilience. 

 

4.6 Management implications 

 

 Results of this study highlight long-term (9-12 year) ecological benefits of restoration 

burning. I found enhanced native diversity, particularly of annual species, more than a decade 

following treatment. This result provides evidence that additional burning treatments are not 

necessary to maintain the diversity benefits provided by first entry burns (for up to 12 years). 

Furthermore, richness enhancement at small spatial scales indicated that colonization occurred 
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frequently throughout the study area. This local enrichment may ensure greater community 

resilience to future disturbance (e.g., wildfire) since species are less likely to be locally 

extirpated if they occur frequently. In comparison, studies in the Black Hills and Sierra Nevada 

have estimated the longevity of fuels reduction from prescribed burning to be 10-15 years, with 

the addition of thinning further enhancing treatment longevity (Battaglia et al. 2008, Stephens et 

al. 2012). This study indicates that the longevity of understory diversity benefits are at least as 

long. 

 A common concern with thinning and burning treatments is the potential for limited 

benefits to be accompanied by adverse effects, such as the enhancement of non-native as well as 

native diversity. Fire-suppressed plant communities appear to successfully exclude non-natives 

(Keeley 2006 and references therein), but the re-introduction of fire has been shown to increase 

their abundance and diversity (Nelson et al. 2008, Willms et al. 2017). This study shows that 

while diversity trade-offs occur, they are small, and field observations indicate that non-native 

abundance is low. The continued resistance to non-natives may be a result of the isolation of the 

study sites from known vectors (e.g., roads, human habitation), helicopter yarding minimized 

disturbance, and high fuel moisture kept fire severity low so alteration of the soil surface was 

minimized. While non-native responses to treatments should be closely monitored and controlled 

(see Nelson et al. 2008), I suggest that the ability of thinning and burning to reduce the risk of 

high-severity wildfire, and the risk for non-native invasion accompanying it, outweigh the low-

level spread of non-natives resulting from these activities. 

 This study demonstrated that time of observation can affect our understanding of the 

effectiveness of restoration treatments. We cannot assume that short-term responses represent 

long-term responses, though additional studies can confirm whether the variation in short-term 
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responses among studies persists, or if responses converge over time. Thus, despite the 

challenges to conducting long-term experiments, it is crucial that monitoring of them continues 

so we can fully evaluate the benefits and trade-offs of thinning and burning for dry forest 

restoration. 
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6. Appendix A 

 

Taxa observed over the course of study ordered by life form and longevity group used in 

analyses. Species grouped at the genus level are listed in footnotes. Asterisk indicates non-native 

species. 

 

   Latin name Family Common name 

Shrub taxa   

   Acer glabrum Aceraceae Rocky Mountain maple 

   Acer macrophyllum Aceraceae bigleaf maple 

   Amelanchier alnifolia Rosaceae Saskatoon serviceberry 

   Ceanothus sanguineus Rhamnaceae redstem ceanothus 

   Ceanothus velutinus Rhamnaceae snowbrush ceanothus 

   Chimaphila menziesii Pyrolaceae little prince's pine 

   Chimaphila umbellata Pyrolaceae pipsissewa 

   Crataegus douglasii Rosaceae black hawthorn 

   Holodiscus discolor Rosaceae oceanspray 

   Lonicera ciliosa Caprifoliaceae orange honeysuckle 

   Mahonia aquifolium Berberidaceae hollyleaved barberry 

   Mahonia nervosa Berberidaceae Cascade barberry 

   Paxistima myrsinites Celastraceae Oregon boxleaf 

   Penstemon fruticosus Scrophulariaceae bush penstemon 

   Philadelphus lewisii Hydrangeaceae Lewis' mock orange 

   Populus tremuloides Salicaceae quaking aspen 

   Prunus emarginata Rosaceae bitter cherry 

   Prunus virginiana Rosaceae chokecherry 

   Purshia tridentata Rosaceae antelope bitterbrush 

   Ribes spp.1 Grossulariaceae currant 

   Robinia pseudoacacia Fabaceae black locust 

   Rosa spp.2 Rosaceae rose 

   Rubus leucodermis Rosaceae whitebark raspberry 

   Rubus parviflorus Rosaceae thimbleberry 

   Salix scouleriana Salicaceae  Scouler's willow 

   Sambucus nigra ssp. cerulea Caprifoliaceae blue elder 

   Sorbus scopulina Rosaceae Greene's mountain ash 

   Spiraea betulifolia var. lucida Rosaceae shinyleaf spirea 

   Symphoricarpos albus  Caprifoliaceae common snowberry 

   Symphoricarpos oreophilus Caprifoliaceae mountain snowberry 

      

Herbaceous taxa   

 Annual   

  Forb   

   Clarkia rhomboidea Onagraceae diamond clarkia 

   Collinsia parviflora Scrophulariaceae maiden blue eyed Mary 
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   Latin name Family Common name 

   Collomia grandiflora Polemoniaceae grand collomia 

   Cryptantha affinis Boraginaceae quill cryptantha 

   Cryptantha torreyana Boraginaceae Torrey's cryptantha 

   Epilobium spp.3 Onagraceae annual willowherb spp. 

   Gayophytum diffusum Onagraceae spreading groundsmoke 

   Madia exigua Asteraceae small tarweed 

   Madia gracilis Asteraceae grassy tarweed 

   Microsteris gracilis Polemoniaceae slender phlox 

   Mycelis muralis* Asteraceae wall-lettuce 

   Phacelia linearis Hydrophyllaceae threadleaf phacelia 

   Polygonum douglasii Polygonaceae Douglas' knotweed 

   Stellaria nitens Caryophyllaceae shiny chickweed 

   Cirsium vulgare* Asteraceae bull thistle 

   Conyza canadensis Asteraceae Canadian horseweed 

   Lactuca serriola* Asteraceae prickly lettuce 

   Senecio vulgaris* Asteraceae old-man-in-the-Spring 

   Tragopogon dubius* Asteraceae yellow salsify 

   Claytonia perfoliata Portulacaceae miner's lettuce 

   Verbascum thapsus* Scrophulariaceae common mullein 

   Arabis holboellii Brassicaceae Holboell's rockcress 

   Senecio integerrimus Asteraceae lambstongue ragwort 

  Graminoid   

   Bromus racemosus* Poaceae bald brome 

   Bromus tectorum* Poaceae cheatgrass 

   Bromus carinatus Poaceae California brome 

      

 Perennial   

  Forb   

   Achillea millefolium Asteraceae common yarrow 

   Achlys triphylla Berberidaceae sweet after death 

   Adenocaulon bicolor  Asteraceae American trailplant 

   Agoseris grandiflora Asteraceae bigflower agoseris 

   Agoseris retrorsa Asteraceae spearleaf agoseris 

   Agoseris sp.4 Asteraceae agoseris 

   Anemone oregana Ranunculaceae blue windflower 

   Angelica arguta Apiaceae Lyall's angelica 

   Antennaria microphylla Asteraceae littleleaf pussytoes 

   Antennaria racemosa Asteraceae raceme pussytoes 

   Apocynum androsaemifolium Apocynaceae spreading dogbane 

   Arnica cordifolia Asteraceae heartleaf arnica 

   Balsamorhiza sagittata Asteraceae arrowleaf balsamroot 

   Cacaliopsis nardosmia Asteraceae silvercrown 

   Calochortus lyallii Liliaceae Lyall's mariposa lily 

   Castilleja hispida Scrophulariaceae harsh Indian paintbrush 

   Castilleja miniata Scrophulariaceae giant red Indian paintbrush 

   Chamerion angustifolium ssp. angustifolium Onagraceae fireweed 

   Claytonia lanceolata Portulacaceae lanceleaf springbeauty 

   Clintonia uniflora Liliaceae bride's bonnet 

   Corallorhiza maculata Orchidaceae summer coralroot 
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   Latin name Family Common name 

   Crepis atribarba Asteraceae slender hawksbeard 

   Cystopteris fragilis Dryopteridaceae brittle bladderfern 

   Delphinium sp.5 Ranunculaceae larkspur 

   Epilobium ciliatum ssp. watsonii Onagraceae fringed willowherb 

   Erigeron speciosus Asteraceae aspen fleabane 

   Eriogonum elatum Polygonaceae tall woolly buckwheat 

   Eriogonum umbellatum Polygonaceae sulphur-flower buckwheat 

   Erythronium grandiflorum Liliaceae yellow avalanche-lily 

   Eucephalus engelmannii Asteraceae Engelmann's aster 

   Eurybia conspicua Asteraceae western showy aster 

   Galium sp.6 Rubiaceae bedstraw 

   Geum triflorum Rosaceae old man's whiskers 

   Gnaphalium sp.5 Asteraceae cudweed 

   Goodyera oblongifolia Orchidaceae western rattlesnake plantain 

   Helianthella uniflora Asteraceae oneflower helianthella 

   Heuchera cylindrica Saxifragaceae roundleaf alumroot 

   Hieracium albiflorum Asteraceae white hawkweed 

   Hieracium scouleri  Asteraceae Scouler's woollyweed 

   Hydrophyllum capitatum Hydrophyllaceae ballhead waterleaf 

   Kelloggia galioides Rubiaceae milk kelloggia 

   Lathyrus pauciflorus Fabaceae fewflower pea 

   Lilium columbianum Liliaceae Columbian lily 

   Lithophragma sp.5 Saxifragaceae woodland-star 

   Lithospermum ruderale Boraginaceae western stoneseed 

   Lomatium nudicaule Apiaceae barestem biscuitroot 

   Lomatium triternatum  Apiaceae nineleaf biscuitroot 

   Lupinus sp.5 Fabaceae lupine 

   Maianthemum racemosum ssp. amplexicaule Liliaceae feathery false lily of the valley 

   Maianthemum stellatum Liliaceae starry false lily of the valley 

   Microseris nutans Asteraceae nodding microceris 

   Mitella trifida Saxifragaceae threeparted miterwort 

   Moehringia macrophylla Caryophyllaceae largeleaf sandwort 

   Montia parvifolia Portulacaceae littleleaf minerslettuce 

   Osmorhiza berteroi Apiaceae sweetcicely 

   Osmorhiza occidentalis Apiaceae western sweetroot 

   Penstemon procerus Scrophulariaceae littleflower penstemon 

   Phacelia hastata Hydrophyllaceae silverleaf phacelia 

   Piperia unalascensis Orchidaceae slender-spire orchid 

   Polystichum munitum Dryopteridaceae western swordfern 

   Potentilla glandulosa Rosaceae sticky cinquefoil 

   Pseudostellaria jamesiana Caryophyllaceae tuber starwort 

   Pyrola picta Pyrolaceae whiteveined wintergreen 

   Sedum stenopetalum Crassulaceae wormleaf stonecrop 

   Silene menziesii Caryophyllaceae Menzies' campion 

   Silene scouleri Caryophyllaceae simple campion 

   Stephanomeria minor var. minor Asteraceae narrowleaf wirelettuce 

   Taraxacum officinale* Asteraceae common dandelion 

   Thalictrum occidentale Ranunculaceae western meadow-rue 
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   Latin name Family Common name 

   Trifolium sp.5 Fabaceae clover 

   Trillium ovatum Liliaceae Pacific trillium 

   Triteleia grandiflora var. grandiflora Liliaceae largeflower triteleia 

   Vicia americana Fabaceae American vetch 

   Viola glabella Violaceae pioneer violet 

   Zigadenus venenosus Liliaceae meadow deathcamas 

  Graminoid   

   Achnatherum occidentale Poaceae western needlegrass 

   Agropyron cristatum* Poaceae crested wheatgrass 

   Bromus vulgaris Poaceae Columbia brome 

   Calamagrostis rubescens Poaceae pinegrass 

   Carex concinnoides Cyperaceae northwestern sedge 

   Carex geyeri Cyperaceae Geyer's sedge 

   Carex rossii Cyperaceae Ross' sedge 

   Elymus glaucus Poaceae blue wildrye 

   Festuca idahoensis Poaceae Idaho fescue 

   Festuca occidentalis Poaceae western fescue 

   Festuca ovina* Poaceae sheep fescue 

   Koeleria macrantha Poaceae prairie Junegrass 

   Melica bulbosa Poaceae oniongrass 

   Oryzopsis sp.5 Poaceae ricegrass 

   Poa nervosa Poaceae Wheeler bluegrass 

   Poa pratensis* Poaceae Kentucky bluegrass 

   Poa secunda Poaceae Sandberg bluegrass 

   Poa secunda ssp. juncifolia Poaceae rush bluegrass 

   Pseudoroegneria spicata ssp. spicata Poaceae bluebunch wheatgrass 

   Trisetum canescens Poaceae tall trisetum 

*Non-native   

1Ribes aureum, R. cereum, R. hudsonianum, R. niveum, and R. viscosissimum  

2Rosa gymnocarpa, R. nutkana, R. woodsii, and their hybrids   

3Epilobium brachycarpum and E. minutum    

4Agoseris grandiflora or A. retrorsa   

5Unidentified single species   

6Galium aparine and G. triflorum   
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7. Appendix B  

 

Frequency of occurrence and temporal behavior of taxa at two spatial scales. Only those taxa present in ≥10% of plots and ≥2% of 

subplots or quadrats for at least one sampling date are listed. Taxa are arranged by life form and ordered by descending rate of 

colonization of plots at the early sampling date. Numbers are percentage of total plots (n = 48), subplots (for shrubs; n = 480), or 

quadrats (for herbaceous species; n = 960). Bold font indicates annual or biennial taxa. Asterisk indicates non-native species. 

 

  Frequency of occurrence  Early temporal behavior  Late temporal behavior 

  Plots  Subplots/Quadrats  Plots  Subplots/Quadrats  Plots  Subplots/Quadrats 

Life form/Species Pre Early Late  Pre Early Late  Colonized Lost Persisted  Colonized Lost Persisted  Colonized Lost Persisted  Colonized Lost Persisted 

Shrub taxa                        

 Symphoricarpos oreophilus 25 38 52  9 12 23  25 13 13  11 8 1  33 6 19  18 4 5 

 Ceanothus sanguineus 6 29 50  1 9 19  23 0 6  9 0 1  46 2 4  18 0 0 

 Sambucus nigra ssp. cerulea 10 21 25  1 4 6  15 4 6  4 1 0  17 2 8  5 0 1 

 Prunus emarginata 29 38 54  9 10 17  13 4 25  5 3 6  27 2 27  10 2 7 

 Lonicera ciliosa 4 15 19  1 4 7  10 0 4  3 0 1  15 0 4  6 0 1 

 Symphoricarpos albus  88 94 94  56 60 62  10 4 83  11 7 48  13 6 81  14 8 48 

 Ribes spp. 13 15 15  2 3 4  8 6 6  2 1 1  8 6 6  3 1 1 

 Ceanothus velutinus 21 15 38  6 4 16  6 13 8  1 3 2  27 10 10  13 3 3 

 Chimaphila menziesii 6 8 27  1 1 9  6 4 2  1 1 0  23 2 4  8 1 0 

 Rubus parviflorus 2 8 21  0 2 5  6 0 2  2 0 0  19 0 2  5 0 0 

 Acer glabrum 40 33 40  11 10 12  6 13 27  3 4 6  8 8 31  5 4 6 

 Penstemon fruticosus 0 4 15  0 1 5  4 0 0  1 0 0  15 0 0  5 0 0 

 Paxistima myrsinites 25 19 33  7 4 13  4 10 15  2 5 2  13 4 21  8 1 5 

 Holodiscus discolor 54 54 60  20 18 26  4 4 50  3 5 15  6 0 54  8 2 18 

 Salix scouleriana 15 19 17  2 4 3  4 0 15  2 0 0  4 2 13  5 0 0 

 Prunus virginiana 29 33 29  13 13 12  4 0 29  3 3 10  2 2 27  1 2 10 

 Purshia tridentata 27 15 40  8 4 18  2 15 13  1 5 3  13 0 27  11 2 6 
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  Frequency of occurrence  Early temporal behavior  Late temporal behavior 

  Plots  Subplots/Quadrats  Plots  Subplots/Quadrats  Plots  Subplots/Quadrats 

Life form/Species Pre Early Late  Pre Early Late  Colonized Lost Persisted  Colonized Lost Persisted  Colonized Lost Persisted  Colonized Lost Persisted 

 Acer macrophyllum 13 8 21  3 2 5  2 6 6  1 2 1  10 2 10  3 1 2 

 Mahonia aquifolium 79 79 88  39 41 45  2 2 77  0 0 0  8 0 79  0 0 0 

 Spiraea betulifolia var. lucida 69 65 69  45 51 52  0 4 65  10 4 41  2 2 67  8 1 44 

 Mahonia nervosa 10 6 13  6 6 6  0 4 6  1 1 4  2 0 10  1 0 5 

 Amelanchier alnifolia 100 92 98  68 59 73  0 8 92  6 14 54  0 2 98  12 6 61 

 Rosa spp. 100 98 100  64 63 69  0 2 98  8 9 55  0 0 100  11 5 58 

                         

Herbaceous taxa                        

 Claytonia perfoliata 17 75 77  3 18 17  60 2 15  16 1 2  63 2 15  16 1 2 

 Bromus carinatus 17 52 58  2 5 8  40 4 13  4 1 1  42 0 17  7 1 1 

 

Chamerion angustifolium ssp. 

angustifolium 2 29 15  0 5 3  29 2 0  5 0 0  15 2 0  3 0 0 

 Collomia grandiflora 44 67 92  7 12 24  27 4 40  8 3 4  48 0 44  19 2 5 

 Epilobium spp. 0 25 33  0 2 5  25 0 0  2 0 0  33 0 0  5 0 0 

 Hydrophyllum capitatum 27 42 29  3 5 3  25 10 17  4 2 1  17 15 13  2 2 1 

 Cryptantha torreyana 13 35 31  1 4 3  23 0 13  4 0 1  21 2 10  3 0 1 

 Calochortus lyallii 29 44 48  4 6 6  23 8 21  5 2 2  25 6 23  4 2 2 

 Collinsia parviflora 38 46 63  4 11 15  21 13 25  9 2 2  38 13 25  14 2 1 

 Clarkia rhomboidea 8 29 44  1 4 7  21 0 8  3 0 1  35 0 8  6 0 1 

 Polygonum douglasii 4 23 17  0 2 2  19 0 4  2 0 0  13 0 4  2 0 0 

 Pseudoroegneria spicata ssp. spicata 44 56 52  7 9 13  19 6 38  6 3 4  17 8 35  8 3 4 

 Crepis atribarba 21 33 23  2 4 4  19 6 15  3 1 2  13 10 10  2 1 1 

 Agoseris retrorsa 6 25 31  1 2 3  19 0 6  2 0 0  25 0 6  3 1 0 

 Lactuca serriola* 0 19 8  0 3 1  19 0 0  3 0 0  8 0 0  1 0 0 

 Galium spp. 13 27 31  1 5 8  17 2 10  3 0 1  21 2 10  7 0 1 

 Hieracium scouleri  40 52 52  6 7 9  15 2 38  2 1 5  15 2 38  4 1 5 

 Elymus glaucus 4 17 46  0 2 8  15 2 2  2 0 0  42 0 4  8 0 0 

 Vicia americana 0 13 13  0 2 3  13 0 0  2 0 0  13 0 0  3 0 0 

 Microsteris gracilis 13 17 25  1 2 4  10 6 6  1 0 0  17 4 8  4 1 0 

 Eurybia conspicua 27 33 35  3 3 4  10 4 23  1 1 2  13 4 23  2 1 2 

 Phacelia hastata 4 15 10  0 2 1  10 0 4  1 0 0  6 0 4  1 0 0 

 Tragopogon dubius* 17 15 21  2 1 3  10 13 4  1 2 0  19 15 2  3 2 0 

 Lupinus sp. 50 54 63  11 13 18  8 4 46  4 3 9  17 4 46  8 2 10 
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  Frequency of occurrence  Early temporal behavior  Late temporal behavior 

  Plots  Subplots/Quadrats  Plots  Subplots/Quadrats  Plots  Subplots/Quadrats 

Life form/Species Pre Early Late  Pre Early Late  Colonized Lost Persisted  Colonized Lost Persisted  Colonized Lost Persisted  Colonized Lost Persisted 

 Eucephalus engelmannii 21 29 33  3 3 5  8 0 21  1 1 2  13 0 21  3 1 2 

 Adenocaulon bicolor  8 17 10  1 2 3  8 0 8  2 0 1  2 0 8  2 0 1 

 Heuchera cylindrica 0 8 17  0 1 3  8 0 0  1 0 0  17 0 0  3 0 0 

 Bromus tectorum* 2 8 33  0 0 4  8 2 0  0 0 0  31 0 2  4 0 0 

 Angelica arguta 50 54 52  8 12 13  6 2 48  5 2 7  8 6 44  6 2 7 

 Balsamorhiza sagittata 38 40 44  7 7 9  6 4 33  2 2 4  13 6 31  4 2 5 

 Lithophragma sp. 8 10 0  1 1 0  6 4 4  0 1 0  0 8 0  0 1 0 

 Melica bulbosa 0 6 21  0 1 4  6 0 0  1 0 0  21 0 0  4 0 0 

 Poa pratensis* 4 10 19  0 1 2  6 0 4  1 0 0  15 0 4  2 0 0 

 Lathyrus pauciflorus 75 73 77  17 18 21  4 6 69  5 4 13  6 4 71  8 4 13 

 Moehringia macrophylla 46 46 44  12 14 24  4 4 42  4 3 10  4 6 40  13 1 11 

 Apocynum androsaemifolium 31 33 35  6 7 9  4 2 29  2 1 5  6 2 29  4 1 5 

 Hieracium albiflorum 40 29 50  5 4 16  4 15 25  2 3 2  25 15 25  14 3 2 

 Cacaliopsis nardosmia 27 29 35  4 5 8  4 2 25  2 2 3  10 2 25  5 1 3 

 Lomatium nudicaule 33 25 29  4 3 4  4 13 21  2 2 2  6 10 23  3 2 2 

 Poa nervosa 0 4 19  0 1 3  4 0 0  1 0 0  19 0 0  3 0 0 

 Cryptantha affinis 0 2 15  0 0 2  2 0 0  0 0 0  15 0 0  2 0 0 

 Calamagrostis rubescens 94 94 94  54 45 48  2 2 92  5 14 40  2 2 92  7 13 41 

 Osmorhiza berteroi 85 75 90  20 22 32  2 13 73  8 6 14  8 4 81  18 7 14 

 Trifolium sp. 13 13 10  6 6 6  2 2 10  0 1 5  0 2 10  0 0 6 

 Pseudostellaria jamesiana 23 21 19  5 4 5  2 4 19  1 2 3  0 4 19  2 2 3 

 Carex rossii 15 6 25  1 1 4  2 10 4  1 1 1  15 4 10  3 0 1 

 Goodyera oblongifolia 15 10 29  1 1 3  2 6 8  0 1 0  17 2 13  2 0 1 

 Festuca occidentalis 8 10 29  1 1 5  2 0 8  1 0 1  21 0 8  4 0 1 

 Antennaria racemosa 6 8 13  1 1 2  2 0 6  0 1 0  6 0 6  2 0 1 

 Agoseris grandiflora 0 2 10  0 0 2  2 0 0  0 0 0  10 0 0  2 0 0 

 Carex geyeri 100 100 100  69 70 81  0 0 100  10 8 60  0 0 100  16 4 65 

 Arnica cordifolia 71 69 69  21 23 29  0 2 69  5 4 17  0 2 69  9 2 19 

 Achillea millefolium 60 54 71  17 14 20  0 6 54  2 5 12  13 2 58  7 4 13 

 Anemone oregana 48 46 46  14 13 16  0 2 46  3 4 10  0 2 46  4 2 12 

 Mitella trifida 17 17 19  3 2 5  0 0 17  1 2 1  2 0 17  3 1 2 

*Non-native 



  Chapter 2 

59 

 

Chapter 2 

 

Choosing among approaches for analyzing understory responses to thinning and burning 

 

Abstract 

 

 There are multiple approaches to statistical analysis of the effects of thinning and burning 

on understory diversity. If the approach is not specified by the research question or the original 

design is compromised, researchers must decide among options regarding data processing and 

model terms. I evaluate four considerations relevant to thinning and burning studies: aggregation 

of nested sample units, categorical versus quantitative treatment predictors, accounting for pre-

treatment conditions, and collinearity among predictor variables. I use a case study to 

demonstrate analytical options. I first conclude that plot-level analysis of treatments has clear 

advantages and can be accomplished without pseudoreplication. Second, quantitative treatment 

predictors allow for analysis of thinning or burning intensity that may be more sensitive than 

categorical representation. Third, accounting for pre-treatment conditions can be accomplished in 

several ways, but some approaches alter the research question and limit the ability to evaluate 

hypotheses about pre-treatment conditions. Finally, collinearity should always be examined and 

the type of sums of squares used should be carefully considered. 

 

 

 

 



  Chapter 2 

60 

 

1. Introduction 

 

 Recent increased interest in ecological restoration objectives that accompany fuel 

reduction treatments has resulted in a considerable body of literature testing the effects of 

thinning and/or burning on understory diversity (e.g., Metlen et al. 2004, Metlen and Fielder 

2005, Dodson and Feidler 2006, Dodson et al. 2008, Webster and Halpern 2010, Fonda and 

Binney 2011, Strahan et al. 2015). Multiple reviews have pointed out the variation in conclusions 

among studies (Schwilk et al. 2009, McIver et al. 2013, Abella and Springer 2015). This 

variation may be due to many factors, including initial stand structure, seasonality of treatment, 

landscape context, or, as I explore in Chapter 1, the temporal and spatial scales of observation. 

However, even when these site and study-specific considerations are controlled, the same data 

set can be statistically analyzed in multiple ways to answer conceptually similar research 

questions (that may later be united in a single meta-analysis or literature review). These 

analytical choices can affect the parameter estimates and significance level of treatment effects, 

with the result that conclusions may vary even for the same data set. 

 Ideally, analytical methods are determined by the research question prior to 

experimentation. However, even when the question is defined, it might not specify details or 

intentionally leave room for fine-tuning, leaving open the possibility for multiple inquiries. For 

example, of the same data set, one could ask, how does thinning affect diversity at a given time 

post-treatment? And, how does thinning affect the change in diversity from prior to treatment? 

Both questions address the effect of restoration on understory diversity, but the response 

variables differ. Neither question addresses how to consider variables besides thinning that may 
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also affect diversity. When not specified in the research question, choices such as these may be 

made implicitly and expressed in the methodological approaches. 

 The expectation is that these types of methodological choices are relatively unimportant 

and that answers to similar questions are consistent, supporting a single trend regarding the 

effects of treatment on understory diversity. But if they are not consistent and only one question 

is investigated, researchers and decision-makers may make assumptions about answers to similar 

questions. Thus, it is important to understand the consistency, or lack thereof, of outcomes 

among statistical choices and make the best choice for each study. The purpose of this study is to 

discuss several relevant analytical considerations regarding ecological restoration with thinning 

and burning, test the consistency of approaches using a single data set, and choose the best 

approach for the data set. 

 In this study, I examined considerations for analyzing the general question, “How do 

thinning and burning affect understory herbaceous richness?” I used a case study of data from a 

fuels-reduction experiment in central Washington to examine consistency in conclusions drawn 

among approaches and discuss the implications of each choice. In particular, I examined data 

disaggregation, categorical versus quantitative treatment predictors, accounting for pre-treatment 

conditions, and examining and remediating collinearity among predictor variables. 

 

1.2. Overview of case study 

 

 The case study is a long-term fuels-reduction experiment located in a Douglas 

fir/ponderosa pine forest in the rugged eastern Cascade Mountains of central Washington. It is 

part of the nationally-coordinated Fire and Fire Surrogate network. The experiment tested the 
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effects of mechanical thinning and prescribed burning, alone and in combination. Thinning was 

from below and performed to a target basal area of 10-14 m2/ha with trees left in clumps, 

consistent with historic spatial patterning (Harrod et al. 1999). Prescribed burning followed 

thinning. Fires were ignited in the spring and were generally mild and patchy (Agee and Lolley 

2006). Each treatment (control, thin-only, burn-only, and thinned and burned) was implemented 

in three approximately 10-ha experimental units. Nine years after treatment, a wildfire entirely 

burned four of the 12 experimental units (two control, one thin-only, and one burn-only unit). 

Field observations indicated substantial deviations in burn severity and plant composition from 

units adhering to the original treatment design, so they were excluded from the data set. 

 Sampling of understory and overstory vegetation occurred 2-3 years prior to treatments 

and two and 9-12 years post-treatment in a nested spatial design (Fig. 2.1). Experimental units 

were sampled with six permanent 0.1-ha plots. In each plot, all trees were measured while 

herbaceous vegetation was sampled with 20 permanent 1-m2 quadrats. Additional information 

and references about the study site, treatments, sampling methods, and data processing can be 

found in Chapter 1 of this thesis. 

 

Figure 2.1 Sampling design of the case study. 

Herbaceous species were sampled in 20 quadrats in 

each of the six plots of each experimental unit. 
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  In this chapter, I evaluated total herbaceous diversity of each plot from the 9-12 year 

post-treatment sampling date using a variety of statistical choices. Plot richness values (n = 48) 

were the total number of unique species sampled among quadrats. Unit-level richness values (n = 

8) were the averages of the plot richness values of all treated plots within each unit (n = 5 or 6); 

plots outside the prescribed burn boundary were not included in unit-level calculations. At the 

unit level, I modeled richness with a 2-factor analysis of variance with categorical predictors of 

thinning and burning and Type III (marginal) sums of squares. At the plot level, I modeled 

richness with mixed-effects models that included fixed effects of thinning, thinning intensity, 

burning, and/or pre-treatment richness and the random effect of unit identity on the intercept. For 

these models, the use of Type I (sequential) or Type III (marginal) sums of squares is specified in 

the text. Modeling was performed in R (version 3.3.0; R Core Team 2016) with the base package 

and nlme package (version 3.1-127; Pinheiro et al. 2016). I present R2 values as goodness-of-fit 

estimates; for mixed-effects models, this was the variance explained by the full model (including 

both random and fixed effects; Nakagawa and Schielzeth 2012), obtained using the MuMIn 

packaging (version 1.15.6; Barton 2016). R code used to produce results is provided in an 

appendix (Appendix A). Prior to testing, a significance level of 0.1 was chosen. 

 

2. Aggregation of spatially nested sample units 

 

 Implementation of mechanical thinning and prescribed burning is costly and logistically 

complex. Typically, experimentation of these treatments involves few replicates, which are 

implemented at relatively large spatial scales (hectares or tens of hectares). Sampling is often 

performed in smaller plots within each experimental unit. This nested design creates options for 
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analyses, the most straightforward of which is to aggregate the plot data in each unit (by 

averaging or summing) and conduct an analysis of variance (ANOVA) of treatment effects. 

 Analyzing data from the case study in such a way showed no significant effects of 

treatment on the average herbaceous richness of each unit (Table 2.1; Fig. 2.2a). The model 

explained 42% of the variation in the data. With eight units to analyze, the residual (i.e., 

denominator) degrees of freedom were four. 

 

  
Thin  Burn  Thin x Burn 

R2 

Residual degrees 

of freedom t P  t P  t P 

0.42 4 -0.73 0.51  -0.12 0.91  1.39 0.24 

 

Table 2.1 Linear model results at the unit level. Treatments are 

categories. The t-statistic is equivalent to the square root of the F-

value, and its sign corresponds to the sign of the parameter 

estimate. Type III (marginal) sums of squares were used. 

Figure 2.2 Post-treatment herbaceous richness among treatments at the a) unit 

and b) plot levels. 

a) b) 
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 The unit-level ANOVA approach is effective when the experiment is balanced (equal 

sample sizes in all units and treatment groups), variation within each unit is small, and treatment 

design is not compromised by external factors. However, environmental variation, logistical 

challenges, and unforeseen events can alter a researcher’s ability to collect or analyze data as 

originally conceived. 

 The case study was subject to several such data challenges. First, the study area was 

topographically rugged, and experimental units and plots varied noticeably in characteristics 

such as aspect, slope, hydrology, and soil depth. Perhaps due in part to this environmental 

variation, thinning and burning intensities varied considerably among plots (Agee and Lolley 

2006). Second, during prescribed burning, two plots were unintentionally outside the burn line. 

Finally, the wildfire nine years after treatment reduced the number of units from 12 to eight and 

created an unbalanced treatment design. As a result of these characteristics and events, the data 

set had low replication and considerable variability in pre-treatment conditions and treatment 

intensities. When one wishes to make such an experiment useful, the ability to adapt statistical 

techniques to accurately and appropriately analyze the existing data is critical. 

 One important such adaptation for my data set was analyzing observations of plots not 

aggregated to the unit level (Fig 2.2b). By using plot-level covariates, I could accommodate 

variation in the physical environment that occurred within experimental units. Plot-level 

treatment attributes allowed for inclusion of untreated plots and quantification of treatment 

intensity, and by modeling variation among plots instead of just among unit means, treatment 

effects could be better detected, even with low replication. These adjustments resulted in 

denominator degrees of freedom based upon the number of plots rather than the number of units. 

To avoid pseudoreplication, I used random effects to account for variation due to unit identity; 
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further, I believe the spatial variation in treatment implementation (clumpy thinning, patchy 

burning) merits consideration of treatment effects at the plot level rather than purely at the unit 

level. It is important to garner useful insights from ecological experiments such as this in which 

it is infeasible to produce many replicates (Davies and Gray 2015). In sum, plot-level analysis of 

these data without pseudoreplication was possible and accommodated the challenges of this 

thinning and burning experimental data set. 

 

3. Categorical versus quantitative treatment variables 

 

 Thinning and burning are often experimentally implemented in a categorical fashion 

(applied or not) but are rarely homogeneous in intensity. Frequently, thinning is intended to leave 

larger trees in higher-density patches consistent with historical spatial patterning (Bartsusevige 

and Kennedy 2009, Harrod et al. 2009). Prescribed burning tends to vary greatly in time and 

space, resulting in heterogeneous severity (Knapp and Keeley 2006). While this variation is often 

desired for creating environmental heterogeneous habitats at larger scales (Weins 2000, Dodson 

and Peterson 2010, Gossner et al. 2013), it opens the possibility of analyzing ecological response 

variables across a range of thinning and burning intensities at smaller scales. 

 A strict statistical approach dictates that levels of predictor variables should be only those 

that were intentionally manipulated (University of Washington Biostatistics consultants, pers. 

comm.). Indeed, many studies exclusively use categorical thinning and burning predictor 

variables when evaluating understory responses to treatment (e.g., Metlen and Fedler 2006, 

Dodson et al. 2008, Strahan et al. 2015). In addition to adhering to original experimental 

intentions, using categorical predictors is advantageous if measurements of treatment intensity 
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are not made and/or one wishes to generalize across them, encompassing the variety of 

intensities in one level. 

 Loosening this restriction, however, allows researchers to test hypotheses about levels of 

treatment intensities that were not necessarily experimentally manipulated. Indeed, significant 

relationships between understory vegetation and levels of thinning or burning intensity have been 

found (Zenner et al. 2006, Webster and Halpern 2010). Treatment intensity (or severity) can be 

measured in various ways, such as direct effects of burning on the understory environment (e.g., 

duff consumption, mineral soil exposure), burning effects on trees (e.g., char height, percent 

crown scorch), or thinning changes to overstory structure (e.g., change in live or dead basal area 

and density). Change metrics can be expressed in absolute or relative terms. Using quantifiable 

metrics such as these allow for hypotheses beyond that of categorical treatment effects, a distinct 

advantage of this approach.  

 On the other hand, a researcher must choose which quantified intensity metrics to use in 

models. This choice may be limited by the feasibility of measurement or what was measured 

during treatment (if the experiment has already occurred). Metrics may not be direct 

measurements of thinning or burning intensity and, as such, may represent activities or processes 

beyond those intended. For example, I chose the pre- to two-years-post-treatment change in live 

stand density index (SDI; calculated as the square root of the product of density and basal area) 

to quantify thinning intensity. This metric characterized change in overstory structure during the 

treatment period, which may have been affected by burning or pathogens as well as thinning. 

Visualizing that high levels of SDI loss occurred only in thinned but in both burned and 

unburned plots increased my confidence that it primarily represents thinning intensity (Fig. 2.3). 
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 I compared outcomes of modeling understory herbaceous richness with categorical versus 

quantitative thinning intensity variables. The quantified thinning variable was the loss in live 

stand density index (positive values corresponded to more tree loss). Burning was not 

represented quantitatively due to insufficient measurement of its intensity or severity; it remained 

categorical (burned or unburned). I used linear mixed-effects models with Type III (marginal) 

sums of squares to evaluate both types of variables. 

 Results using categorical or quantitative treatment variables differed (Table 2.2). With 

categorical variables, I concluded that thinning and burning had no effect on herbaceous 

richness. When quantitative variables were used, a significant interaction was found between 

thinning and burning such that at the mean and 75th percentile of SDI change (plots with mean 

and high thinning intensities), burned plots had significantly higher herbaceous richness than 

unburned plots (Fig. 2.4). This result indicates that in plots that experienced relatively high levels 

Figure 2.3 Pre- to 2-years-post-treatment 

change in stand density index of plots by 

thinning and burning treatments. 
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of thinning and burning, herbaceous richness was enhanced. This conclusion would not have 

been drawn from the categorical analysis and shows the additional insights that can be drawn 

from quantitative forms of treatment variables. 

 

 

  
Thin or SDI 

change  Burn  

Thin or SDI 

change x Burn 

Thinning 
variable type R2 t P  t P  t P 

Categorical 0.35 -0.83 0.44  -0.11 0.92  1.59 0.17 

Quantitative 0.35 -1.08 0.29  0.02 0.99  1.87 0.07 

 

 

 

Table 2.2 Model results using categorical (“Thin”) or 

quantitative (“SDI change”) forms of the thinning predictor 

variable. Type III (marginal) sums of squares were used. 

Bold terms indicate significance at α = 0.1. 

Figure 2.4 Post-treatment herbaceous richness 

versus SDI change. Unfilled circles and the solid 

line represent unburned plots. Filled circles and the 

dashed line represent burned plots. At mean and 

high SDI change, burned plots had significantly 

higher richness values than unburned plots. 
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4. Accounting for pre-treatment conditions 

 

 Pre-treatment conditions should be considered when evaluating the effects of treatments 

on understory diversity. They may be part of hypotheses relating to treatment effects or they may 

be considered extraneous to the experiment. They can be included as predictors, calculated into 

the response variable, or excluded from the model (if justified). A variety of approaches are 

possible; for example: 

 Test for differences between treated and control groups in pre-treatment richness. If none 

are found, excluding pre-treatment richness entirely from models of post-treatment 

richness may be justified (Strahan et al. 2015). 

 Use environmental and biotic variables (e.g., aspect, slope, overstory cover) to describe 

and account for existing differences among sample units; relevant environmental 

variables are then included in models of post-treatment diversity and abundance (Metlen 

et al. 2004). 

 Use pre- to post-treatment change in understory metrics as response variables (Dodson 

and Peterson 2010). Change can be expressed as a raw value or relative to the pre-

treatment measure. 

 Use pre- to post-treatment change in understory metrics and a pre-treatment covariate in 

models. Interactions between the covariate and treatment variables are included in full 

models and then eliminated if not significant (Dodson et al. 2008). 

 Conduct repeated measures tests of richness at all time periods with time as a predictor 

variable (Kerns et al. 2011). 
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 When choosing an approach, I considered i) which pre-treatment variables to include, ii) 

relationships between pre-treatment conditions and treatments, iii) the response variable tested, 

and iv) hypotheses (if any) regarding pre-treatment conditions. 

 i) Pre-treatment conditions can be represented by environmental variables and/or 

measurements of overstory structure (e.g., Metlen et al. 2004), or by the pre-treatment value of 

the response variable (e.g., Dodson et al. 2008). The latter may be considered representative of 

pre-treatment ecological conditions upon which treatments act and/or simply the baseline of the 

response variable. In the case study, I chose to represent initial conditions with pre-treatment 

herbaceous richness. 

 ii) Some data sets may exhibit pre-existing relationships between initial conditions and 

forthcoming treatments. In relatively environmentally homogenous study sites where 

environmental differences among experimental units can be kept to a minimum, relying on the 

comparison of treated to control sites may be appropriate, as Strahan et al. (2015) did in the 

Southwest. In rugged or diverse sites, such as in the Cascade Mountains of the case study, 

examining and/or accounting for the impact of pre-treatment conditions is critical. Ideally, 

variation among units is accommodated with experimental blocking so no relationship exists 

between treatment and pre-treatment conditions. However, case study model results indicated a 

pre-existing, negative relationship between richness and SDI change in the case study (Table 

2.3). Thus, I was not justified in excluding pre-treatment conditions from the consideration of 

post-treatment responses. 

 iii) Pre-treatment richness can be included as part of the response variable by subtracting 

or dividing it from post-treatment richness (e.g., Dodson et al. 2008, Dodson and Peterson 2010). 

Doing so, however, changes the question being asked of the data. In the case study, for example, 
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burning was seen to have a positive effect on post-treatment richness (Table 2.3, Fig. 2.5), 

indicating that burned plots had higher richness than unburned plots at that sampling period. 

However, its positive effect on richness change (Table 2.3, Fig. 2.5) indicated that burned plots 

saw a larger increase in richness over the treatment period rather than at a single point in time. 

The difference may be subtle, but the research question should be considered when making a 

choice. One can also consider the goodness-of-fit of the model. In the case study, using richness 

change increased the variance explained by 33% (Table 2.3). Guided by my research question, I 

chose to use post-treatment richness as the response variable. 

 

Table 2.3 Model results using different approaches to account for pre-treatment conditions. Type 

I (sequential) sums of squares were used. Dashes indicate non-applicable cells. Bold terms 

indicate significant results at α = 0.1. 

 

    
Pre-treatment 

richness  SDI change  Burn  
SDI change x 

Burn 

Approach Response Predictors R2 t P   t P   t P   t P 

Exclusion 
Pre-treatment 

richness 

SDI change, 

Burn 
0.56 - -  -4.59 <0.001  -1.59 0.12  0.71 0.49 

Exclusion 
Post-treatment 
richness 

SDI change, 
Burn 

0.35 - -  -0.69 0.50  1.67 0.10  1.87 0.07 

Predictor 
Post-treatment 

richness 

Pre-treatment 
richness, SDI 

change, Burn 

0.49 1.95 0.06  2.07 0.05  2.28 0.03  1.66 0.10 

Response 

Pre- to post-

treatment 
richness change 

SDI change, 

Burn 
0.62 - -  3.74 <0.001  2.59 0.02  1.52 0.14 

Predictor & 

Response 

Pre- to post-

treatment 
richness change 

Pre-treatment 

richness, SDI 
change, Burn 

0.63 -3.87 <0.001  2.10 0.05  2.30 0.03  1.70 0.097 
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 iv) Pre-treatment conditions may be considered extraneous or may be part of hypotheses 

relating to treatment effects. If they are considered extraneous, the goal is to sufficiently account 

for pre-treatment differences among experimental units so as to not to bias results toward 

treatment effects (i.e., variable omission bias; Mela and Kopalle 2002). This can be 

accomplished by any of the approaches discussed here. If they are part of hypotheses, however, 

including them as predictors or covariates is preferred, as it allows for estimation and 

significance testing of parameters and the possibility for interactions with treatments.  

 Because of these advantages, I chose to include pre-treatment richness as a covariate in 

the case study. I did so by fitting a full model with all possible interactions and then iteratively 

removing insignificant interactions (p > 0.1), starting with the 3-way interaction (the interaction 

between SDI change and burning was not removed). I used Type I (sequential) sums of squares 

to ensure that the pre-treatment covariate was accounted for first in each model. I found that 

higher pre-treatment richness values led to higher post-treatment richness values, suggesting that 

most species persisted through treatments (Table 2.3). Including the pre-treatment covariate in 

Figure 2.5 Post-treatment herbaceous richness or the pre- to post-treatment change in 

herbaceous richness versus pre-treatment richness, colored by burn status and SDI change. 
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the model of post-treatment richness had another advantage: it improved the variance explained 

by 40% (Table 2.3). However, it also dramatically altered the parameter estimate and p-value of 

SDI change, raising my concerns about collinearity between these predictors.  

 

5. Addressing collinearity among predictors 

 

 Collinearity is the correlation of predictors in a multiple regression model. It is a potential 

issue in all multiple regression-type analyses, particularly if some variables are observed and not 

experimentally manipulated (Mela and Kopalle 2002, Graham 2003, Dorman et al. 2013). 

Among thinning and burning studies, which frequently employ multiple regression, I have rarely 

seen collinearity among predictors addressed (except see Metlen et al. 2004), despite its potential 

effect on model outcomes. If collinearity is substantial, it increases the standard error of 

parameter estimates, making estimates unstable among fitted models and reducing the power to 

detect significant effects (Kutner et al. 2004, Zar 2014). It also makes the effects of the 

predictors on the response ambiguous, as effects on the response may be due to only one of the 

correlated predictors or to a true combination of them (Graham et al. 2003, Kutner et al. 2004).  

 

5.1 Diagnosing collinearity 

 

 There are several methods for examining data and models for problematic collinearity. 

First, one can examine the correlation coefficients between pairs of continuous predictors (a 

common threshold is |r| ≥ 0.8; Zar 2014). Second, unstable parameter estimates can be examined 

by adding or deleting correlated predictors from models and looking for substantial changes in 



  Chapter 2 

1In the linear mixed-effects models of section 5, I scaled SDI change by its standard deviation 

and normalized pre-treatment richness to attain comparable effect sizes and errors. This 

standardization did not affect t-statistics or p-values of treatment effects. (Scaling and/or 

centering predictors is another important consideration in modeling; see Robinson and 

Schumaker [2009] and references therein.) 
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parameter estimates and standard errors based on marginal sums of squares (Kutner et al. 2004). 

Finally, a widely-used diagnostic is the variance inflation factor, which measures the degree to 

which the standard errors of parameter estimates are inflated by correlation among predictors 

(Kutner et al. 2004). Common thresholds are 5 or 10, but some authors argue substantial effects 

on p-values can be seen at values as low as 2 (Graham 2003, O’brien 2007). Despite these 

available methods, no tests for “significant” effects of collinearity exist; a researcher ultimately 

must use his/her best judgement to determine if it is problematic to a study. 

 In my study, I was suspicious of collinearity between SDI change and pre-treatment 

richness (see section 4). I examined the collinearity in my model via the three methods outlined 

above.  The correlation coefficient between pre-treatment richness and SDI change was -0.63 

(Fig. 2.6), the absolute value of which was below the common threshold of 0.8. When I removed 

the predictors one at a time from a model testing just pre-treatment richness and SDI change1  

 

Figure 2.6 Pre-treatment herbaceous 

richness and SDI change are negatively 

correlated (r = -0.63, p < 0.001). 
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(without an interaction), the magnitudes of the parameter estimates decreased and the p-value of 

SDI change increased substantially (Table 2.4). However, the standard errors of both predictors 

did not change much, and the amount of variance explained improved 55% when pre-treatment  

richness was included, indicating that pre-treatment richness explained a substantial amount of 

variation not also explained by SDI change. The variance inflation factors for a model of pre-

treatment richness, SDI change, and burning (no interactions) were 1.51, 1.44, and 1.06, 

respectively. These are well below the common thresholds of 5 or 10. I interpreted these 

diagnostics all together as showing a small but insubstantial effect of collinearity between the 

predictors in the case study. If, on the other hand, I had found major evidence of collinearity, I 

would consider the remediation measures presented in the following section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.2 Remediating collinearity 

 

 If collinearity is deemed problematic using the diagnostics described above, multiple 

approaches to reduce its effects are possible (Graham 2003, Kutner et al. 2004, Zar 2014). Using 

the case study, I illustrate three options. 

  
Pre-treatment 

richness  SDI change 

Predictors in model R2 b SE(b) P   b SE(b) P 

Pre-treatment 

richness, SDI change 
0.49 2.52 0.89 0.01  3.25 1.75 0.07 

Pre-treatment 

richness 
0.48 1.70 0.78 0.04  - - - 

SDI change 0.31 - - -  0.80 1.51 0.60 

Table 2.4 Parameter estimates (b), their standard errors, and p-
values when different sets of correlated predictors are in models of 

post-treatment richness. Predictors were standardized by their 

standard deviations. Type III (marginal) sums of squares were used 

as suggested by Kutner et al. (2004) for this test. Dashes indicate 

non-applicable cells. Bold terms indicate significance at α= 0.1. 
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5.2.1 Remove a correlated predictor 

 

 A simple approach to remediating collinearity is to eliminate one of the correlated 

predictors from the model. In the case study, I eliminated either pre-treatment richness or SDI 

change from a full model that included the categorical burn predictor and all possible interactions 

(as in section 4, the insignificant interactions between pre-treatment richness and treatment 

variables were iteratively removed; as in section 5.1, predictors were standardized by their 

standard deviations). As we saw when testing for collinearity (section 5.1), removing pre-

treatment richness substantially altered the significance of SDI change and the amount of 

variation explained (R2; Table 2.5), pointing to the importance of considering the influence of 

pre-treatment richness in our model. Statistics of burning or the interaction between SDI change 

and burning were little changed. 

 There are two major drawbacks to this approach: loss of explanatory power of the 

removed predictor and difficulty deciding which predictor to remove. I experienced both of 

these. The model lost 35% of the variance it explained when pre-treatment richness was removed 

(Table 2.5). I saw elsewhere the large influence pre-treatment richness had on model results, so I 

did not want to remove it. However, the purpose of the study was to test the effects of thinning 

and burning, so removing the thinning predictor from the model inhibited our ability to answer 

the research question. In sum, removing a correlated predictor was a poor choice for this case 

study. It may be a better choice when modeling a suite of environmental predictors, for example 

(e.g., Metlen et al. 2004). 
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Table 2.5 Model results when either or neither pre-treatment richness or SDI change are 

excluded from full models of post-treatment richness. Predictors were standardized by their 

standard deviations. Type I (sequential) sums of squares were used to ensure the covariate, pre-

treatment richness, was accounted for first. Dashes indicate non-applicable cells. Bold terms 

indicate significance at α= 0.1. 

 

  
Pre-treatment 

richness  SDI change  Burn  

SDI change x 

Burn 

Predictors in 

model R2 t P   t P   t P   t P 

Pre-treatment 

richness, Burn 
0.43 1.99 0.05  - -  1.81 0.08  - - 

SDI change, 
Burn 

0.35 - -  -0.69 0.50  1.67 0.10  1.87 0.07 

Pre-treatment 

richness, SDI 
change, Burn 

0.49 1.95 0.060  2.07 0.05  2.28 0.03  1.67 0.11 

 

5.2.2 Combine correlated predictors 

 

 A second approach to remediating collinearity is combining correlated predictors into one 

or more composite indices. This is often accomplished with Principal Component Analysis 

(PCA), since the resulting indices are uncorrelated (McCune and Grace 2002, Kutner et al. 

2004). Performing a PCA on pre-treatment richness and SDI change in the case study resulted in 

two orthogonal components explaining 81.7% and 18.3% of the variation in these variables (Fig. 

2.7). Loadings on the first component were 0.71 and -0.71 for pre-treatment richness and SDI 

change, respectively, and -0.71 for both variables on the second component. I used the scores of 

the first component and the categorical burn predictor in a linear mixed-effects model of post-

treatment herbaceous richness (Type I sums of squares). I found no significant effects of any 

predictor or interaction (Table 2.6). In another model testing the scores of both components and 
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burning, I found positive effects of the second component scores and burning and no significant 

interactions (Table 2.6). 

 

 

 

 

  

    Component 1   Component 2   Burn 

PCA components 

included in model R2 t P   t P   t P 

Component 1 0.37 0.89 0.38  - -  1.52 0.14 

Component 1, 

Component 2 
0.42 0.83 0.41   2.66 0.01   2.26 0.03 

Figure 2.7 PCA biplot of a synthesis of 

pre-treatment richness and SDI change to 

ameliorate collinearity in models that use 

both variables. 

Table 2.6 Model results of the PCA approach to remediating 

collinearity. Either just the first or both components were 

included in the models. Type I (sequential) sums of squares were 

used. Insignificant interactions were removed from the models. 

Dashes indicate non-applicable cells. Bold terms indicate 

significance at α= 0.1. 
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 While the composite approach includes all predictors in the model in some fashion, there 

are two disadvantages. If not all PCA components are included, less variation is explained by the 

model than when all unmodified predictors are included (in this study, R2 of 0.37 versus 0.49). 

Second, the interpretation of the composite index as a function of the predictors may be 

ambiguous and/or limit the applicability of the results to the original research question. In the 

case study, higher values of Component 1 corresponded to higher pre-treatment richness and 

lower SDI change. We might expect, however, for these predictor levels to have opposite effects 

on post-treatment richness: higher pre-treatment richness should result in higher post-treatment 

richness whereas lower SDI change (corresponding to lower thinning intensity) should result in 

lower post-treatment richness. These opposing expectations could be the reason for the lack of 

significance of the component in the model (especially compared to the highly significant 

individual variables, Table 2.5). The positive effect of Component 2 in the second model 

indicates that plots with lower pre-treatment richness as well as lower SDI change had higher 

post-treatment richness. The effects of the components, while interpretable, do not aid greatly in 

answering the research question regarding the effects of thinning and burning, rendering this 

approach not a good choice for the case study, especially since collinearity was deemed a 

minimal issue. In a different study, where expectations were the same for correlated predictors, 

combining them via PCA may be a good option. 

 

5.2.3 Prioritizing predictors and using sequential sums of squares 

 

 Graham (2003) suggests a third approach to remediate collinearity: instead of using 

marginal tests of parameter significance (e.g., Type III sums of squares), use sequential 



  Chapter 2 

 

81 

 

regression (e.g., Type I sums of squares) on predictors that have been prioritized. This ensures 

that shared contributions to the variation of the response variable are attributed to the predictor of 

higher priority, allowing for clearer interpretation of the effects of correlated predictors. 

 The challenge of this approach is ensuring that predictor prioritization reflects ecological 

functionality and/or there is a research-based hierarchy of predictors contributing to variation in 

the response variable (Graham et al. 2003). In the case study, the inclusion of the pre-treatment 

covariate aided in determining predictor priority. In fact, I used Type I (sequential) sums of 

squares throughout this chapter when I desired to account for the effect of pre-treatment richness 

prior to testing the effects of treatments. However, the hierarchy of SDI change and burning, and 

their interaction, was less clear. In plots that were both thinned and burned, thinning occurred 

first. But thinning and burning were also implemented independently, and the temporal 

relationship of the variables did not dictate that any shared variation should be attributed to 

thinning instead of burning. 

 I tested both Type I and Type III sums of squares on the model specified in section 5.2.1. 

For Type I sums of squares, in which the order of terms matters, pre-treatment richness was 

always the first term in the model, the interaction was the last, and both orders of the SDI change 

and burning terms were tested.  

 The type of sums of squares had a substantial effect on case study model outcomes 

(Table 2.7), but choosing the best type of sums of squares was not straightforward. Prioritizing 

predictors and using Type I sums of squares resulted in significant effects of both SDI change 

and burning (no matter the order of terms), but both effects were very insignificant with Type III 

sums of squares. Because the only difference for these terms between the types of sums of 

squares tests was the inclusion of the interaction term in calculating the extra sums of squares 
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(Kutner et al. 2004), it was clear that the interaction term shared a large amount of explained 

variance with thinning and burning. The question was, how should that shared variance be 

attributed? When it was entirely excluded as in Type III, no significant treatment effects were 

seen. When it was attributed to thinning and/or burning while ignoring that it was shared with the 

interaction, both thinning and burning were significant. Visualizing post-treatment richness as a 

function of SDI change and burning does seem to suggest that treatments are affecting richness 

(Fig. 2.4). Thus, it may be that Type III sums of squares is too conservative an approach and 

hides real effects of treatments. While arguable, it appeared Type I was the better choice for the 

case study. 

 

Table 2.7 Model results using Type I (sequential) or Type III (marginal) sums of squares to 

examine the method of accounting for collinearity by prioritizing predictors. Terms were ordered 

in the model as presented in the table, except for in the second test when burning was tested prior 

to SDI change. Dashes indicate non-applicable cells. Bold terms indicate significance at α= 0.1. 

 

   
Pre-treatment 

richness  SDI change  Burn  
SDI change 

x Burn 

Type of sums 
of squares 

First treatment 
term R2 t P   t P   t P   t P 

I (sequential) SDI change 0.49 1.95 0.06  2.07 0.05  2.28 0.03  1.66 0.10 

I (sequential) Burn 0.49 1.95 0.06  2.22 0.03  2.14 0.04  1.66 0.10 

III (marginal) - 0.49 3.03 0.01  0.33 0.75  0.70 0.49  1.66 0.10 

 

6. Conclusion 

 

 There is no “one-size-fits-all” approach to analyzing thinning and burning studies. A 

researcher must make conscientious choices about statistical approaches to ensure the research 

question is being answered and data set challenges are being met. Unfortunately, these choices 
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are not always straightforward, as I saw when evaluating and accounting for collinearity with my 

case study. Nonetheless, I was able to make informed choices to accommodate for the challenges 

of this data set (Table 2.8) and formulate a final approach:  

 
Post-treatment richness of plots~  

Fixed effects: Pre-treatment richness, SDI change, Burn, interactions 
Random effect: Experimental unit identity 

Sums of squares: Type I (sequential). 
 

Table 2.8 Analytical considerations, best approaches, and advantages of choices made for the 

case study presented. 

 

Consideration Best approach for case study Advantages of chosen approach 

Data aggregation 
Plot-level data with mixed-
effects model 

Include unintentionally untreated plots, model 
variation among plots, achieve higher statistical 

power despite low replication 

Categorical or 

quantitative thinning 
predictor 

Quantitative (SDI change) 
Account for and detect effects of variation in 

treatment intensity 

Accounting for pre-
treatment richness 

Covariate predictor 
Account for relative pre-treatment variation among 
plots, hypothesize about pre-treatment effects 

Collinearity 
Type I (sequential) sums of 
squares 

Collinearity not found to be problematic, attribute 
shared variation among predictors to main effects 

rather than exclude entirely 
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8. Appendix A 

 

Script of R code to obtain model results and summaries. 

 
#Chapter 2 code for model results and summaries ---- 

 

#Libraries used 

 

library(nlme) #Run mixed models 

library(MuMIn) #Calculated pseudo-R^2 

#Also enter vif.mer function https://github.com/aufrank/R-

hacks/blob/master/mer-utils.R 

 

#Read data file 

 

lmdata48<-read.csv("lmdata48.csv") 

 

#Section 2. Data disaggregation 

 

#Summarize data to unit scale, removing the unburned plot 

 

lmdata47_unit<-ddply(lmdata48[!lmdata48$PlotID=="Spromberg.5",], 

                     .variables=.(Unit,Treatment,Thin,Burn), .fun=summarise, 

Earlyrich_unit_herbs=mean(Earlyrich_plot_herbs), 

Laterich_unit_herbs=mean(Laterich_plot_herbs), 

Prerich_unit_herbs=mean(Prerich_plot_herbs)) 

 

#Run mixed model on unit and then plot data 

 

summary(lm(Laterich_unit_herbs~Thin*Burn, data=lmdata47_unit)) #Default SS is 

type iii 

r.squaredGLMM(lm(Laterich_unit_herbs~Thin*Burn, data=lmdata47_unit)) 

summary(lme(Laterich_plot_herbs~Thin*Burn, random=~1|Unit, data=lmdata48)) 

r.squaredGLMM(lme(Laterich_plot_herbs~Thin*Burn, random=~1|Unit, 

data=lmdata48)) 

 

#3. Categorical vs continuous treatment variables 

 

#Model using categorical treatment variables 

 

summary(lme(Laterich_plot_herbs~Thin*Burn, random=~1|Unit, data=lmdata48)) 

r.squaredGLMM(lme(Laterich_plot_herbs~Thin*Burn, random=~1|Unit, 

data=lmdata48)) 

 

#Model using continuous thinning variable 

 

summary(lme(Laterich_plot_herbs~SDI_early_change_neg + Burn + 

SDI_early_change_neg:Burn, random=~1|Unit, data=lmdata48)) 

r.squaredGLMM(lme(Laterich_plot_herbs~SDI_early_change_neg + Burn + 

SDI_early_change_neg:Burn, random=~1|Unit, data=lmdata48)) 
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# Significant thin x burn interaction; use different levels of variables to 

investigate 

 

summary(lme(Laterich_plot_herbs~SDI_early_change_neg_75quantile + Burn + 

SDI_early_change_neg_75quantile:Burn, 

            random=~1|Unit, data=lmdata48)) #effect of burning at high thin 

levels 

summary(lme(Laterich_plot_herbs~SDI_early_change_neg_mean + Burn + 

SDI_early_change_neg_mean:Burn, 

            random=~1|Unit, data=lmdata48)) #effect of burning at mean thin 

levels 

summary(lme(Laterich_plot_herbs~SDI_early_change_neg + Burn_negone + 

SDI_early_change_neg:Burn_negone, 

            random=~1|Unit, data=lmdata48)) #effect of thinning in burned 

plots 

 

#4. Pre-trt accounting 

 

#Table 3 Results. Type I SS. 

 

#pre-trt~t,b 

 

summary(lme(Prerich_plot_herbs~SDI_early_change_neg + Burn + 

SDI_early_change_neg:Burn, random=~1|Unit, data=lmdata48))$tTable #signs 

of t-statistics 

anova(lme(Prerich_plot_herbs~SDI_early_change_neg + Burn + 

SDI_early_change_neg:Burn, random=~1|Unit, 

data=lmdata48),type="sequential") #p-values 

sqrt(anova(lme(Prerich_plot_herbs~SDI_early_change_neg + Burn + 

SDI_early_change_neg:Burn, random=~1|Unit, 

data=lmdata48),type="sequential")[,3]) #obtain t-statistics (which are 

sqrt of F-values) 

r.squaredGLMM(lme(Prerich_plot_herbs~SDI_early_change_neg + Burn + 

SDI_early_change_neg:Burn, random=~1|Unit, data=lmdata48)) #conditional 

pseudo R2 

 

#post~t,b 

 

summary(lme(Laterich_plot_herbs~SDI_early_change_neg + Burn + 

SDI_early_change_neg:Burn, random=~1|Unit, data=lmdata48))$tTable #signs 

of t-statistics 

anova(lme(Laterich_plot_herbs~SDI_early_change_neg + Burn + 

SDI_early_change_neg:Burn, random=~1|Unit, 

data=lmdata48),type="sequential") #p-values 

sqrt(anova(lme(Laterich_plot_herbs~SDI_early_change_neg + Burn + 

SDI_early_change_neg:Burn, random=~1|Unit, 

data=lmdata48),type="sequential")[,3]) #obtain t-statistics (which are 

sqrt of F-values) 

r.squaredGLMM(lme(Laterich_plot_herbs~SDI_early_change_neg + Burn + 

SDI_early_change_neg:Burn, random=~1|Unit, data=lmdata48)) #conditional 

psuedo R2 

 

#post~pre,t,b 
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summary(lme(Laterich_plot_herbs~Prerich_plot_herbs + SDI_early_change_neg + 

Burn + SDI_early_change_neg:Burn, random=~1|Unit, data=lmdata48))$tTable 

#signs of t-statistics #final 

anova(lme(Laterich_plot_herbs~Prerich_plot_herbs + SDI_early_change_neg + 

Burn + SDI_early_change_neg:Burn, random=~1|Unit, 

data=lmdata48),type="sequential") #p-values 

sqrt(anova(lme(Laterich_plot_herbs~Prerich_plot_herbs + SDI_early_change_neg 

+ Burn + SDI_early_change_neg:Burn, random=~1|Unit, 

data=lmdata48),type="sequential")[,3]) #t-stats 

r.squaredGLMM(lme(Laterich_plot_herbs~Prerich_plot_herbs + 

SDI_early_change_neg + Burn + SDI_early_change_neg:Burn, random=~1|Unit, 

data=lmdata48)) #conditional psuedo R2 

 

#change~t,b 

 

summary(lme(Richchange_plot_herbs~SDI_early_change_neg + Burn + 

SDI_early_change_neg:Burn, random=~1|Unit, data=lmdata48))$tTable #signs 

of t-statistics 

anova(lme(Richchange_plot_herbs~SDI_early_change_neg + Burn + 

SDI_early_change_neg:Burn, random=~1|Unit, 

data=lmdata48),type="sequential") #p-values 

sqrt(anova(lme(Richchange_plot_herbs~SDI_early_change_neg + Burn + 

SDI_early_change_neg:Burn, random=~1|Unit, 

data=lmdata48),type="sequential")[,3]) #obtain t-statistics (which are 

sqrt of F-values) 

r.squaredGLMM(lme(Richchange_plot_herbs~SDI_early_change_neg + Burn + 

SDI_early_change_neg:Burn, random=~1|Unit, data=lmdata48)) #conditional 

pseudo R2 

 

#change~pre,t,b 

 

summary(lme(Richchange_plot_herbs~Prerich_plot_herbs + SDI_early_change_neg + 

Burn + SDI_early_change_neg:Burn, random=~1|Unit, data=lmdata48))$tTable 

#signs of t-statistics #final 

anova(lme(Richchange_plot_herbs~Prerich_plot_herbs + SDI_early_change_neg + 

Burn + SDI_early_change_neg:Burn, random=~1|Unit, 

data=lmdata48),type="sequential") #p-values 

sqrt(anova(lme(Richchange_plot_herbs~Prerich_plot_herbs + 

SDI_early_change_neg + Burn + SDI_early_change_neg:Burn, random=~1|Unit, 

data=lmdata48),type="sequential")[,3]) #t-stats 

r.squaredGLMM(lme(Richchange_plot_herbs~Prerich_plot_herbs + 

SDI_early_change_neg + Burn + SDI_early_change_neg:Burn, random=~1|Unit, 

data=lmdata48)) #conditional psuedo R2 

 

#5. Collinearity 

 

#5.1 Testing collinearity 

 

#Bivariate correlation coefficient 

 

with(lmdata48,cor.test(Prerich_plot_herbs,SDI_early_change_neg)) 

 

#Table 4 model results 
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summary(lme(Laterich_plot_herbs~Prerich_plot_herbs_scaled + 

SDI_scaled_notcentered, random=~1|Unit, data=lmdata48)); 

r.squaredGLMM(lme(Laterich_plot_herbs~Prerich_plot_herbs_scaled + 

SDI_scaled_notcentered, random=~1|Unit, data=lmdata48)) 

summary(lme(Laterich_plot_herbs~Prerich_plot_herbs_scaled, random=~1|Unit, 

data=lmdata48)); 

r.squaredGLMM(lme(Laterich_plot_herbs~Prerich_plot_herbs_scaled, 

random=~1|Unit, data=lmdata48)) 

summary(lme(Laterich_plot_herbs~SDI_scaled_notcentered, random=~1|Unit, 

data=lmdata48)); 

r.squaredGLMM(lme(Laterich_plot_herbs~SDI_scaled_notcentered, 

random=~1|Unit, data=lmdata48)) 

 

#Variance inflation factors 

 

vif.mer(lme(Laterich_plot_herbs~Prerich_plot_herbs_scaled + 

SDI_scaled_notcentered + Burn, random=~1|Unit,data=lmdata48)) 

 

#5.2 Remediating collinearity 

 

#5.2.1 Eliminate one predictor from full models 

 

#Table 5. Type I SS. 

 

r.squaredGLMM(lme(Laterich_plot_herbs~Prerich_plot_herbs_scaled + Burn, 

random=~1|Unit, data=lmdata48)) 

summary(lme(Laterich_plot_herbs~Prerich_plot_herbs_scaled + Burn, 

random=~1|Unit, data=lmdata48)) #signs of t-stats 

anova(lme(Laterich_plot_herbs~Prerich_plot_herbs_scaled + Burn, 

random=~1|Unit, data=lmdata48), type="sequential") #p-values 

sqrt(anova(lme(Laterich_plot_herbs~Prerich_plot_herbs_scaled + Burn, 

random=~1|Unit, data=lmdata48), type="sequential")[,3]) #t-stats 

 

r.squaredGLMM(lme(Laterich_plot_herbs~SDI_scaled_notcentered + Burn + 

SDI_scaled_notcentered:Burn, random=~1|Unit, data=lmdata48)) #R2 

summary(lme(Laterich_plot_herbs~SDI_scaled_notcentered + Burn + 

SDI_scaled_notcentered:Burn, random=~1|Unit, data=lmdata48)) #signs of t-

stats 

anova(lme(Laterich_plot_herbs~SDI_scaled_notcentered + Burn + 

SDI_scaled_notcentered:Burn, random=~1|Unit, 

data=lmdata48),type="sequential") #pvals 

sqrt(anova(lme(Laterich_plot_herbs~SDI_scaled_notcentered + Burn + 

SDI_scaled_notcentered:Burn, random=~1|Unit, 

data=lmdata48),type="sequential")[,3]) #tstats 

 

r.squaredGLMM(lme(Laterich_plot_herbs~Prerich_plot_herbs_scaled + 

SDI_scaled_notcentered + Burn + SDI_scaled_notcentered:Burn, 

random=~1|Unit, data=lmdata48)) #R2 

summary(lme(Laterich_plot_herbs~Prerich_plot_herbs_scaled + 

SDI_scaled_notcentered + Burn + SDI_scaled_notcentered:Burn, 

random=~1|Unit, data=lmdata48)) #signs of t-stats 

anova(lme(Laterich_plot_herbs~Prerich_plot_herbs_scaled + 

SDI_scaled_notcentered + Burn + SDI_scaled_notcentered:Burn, 

random=~1|Unit, data=lmdata48), type="sequential") #pvals 
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sqrt(anova(lme(Laterich_plot_herbs~Prerich_plot_herbs_scaled + 

SDI_scaled_notcentered + Burn + SDI_scaled_notcentered:Burn, 

random=~1|Unit, data=lmdata48), type="sequential")[,3])#tstats 

 

#5.2.2 Combine correlated predictors (PCA) 

 

#Create PCA 

 

summary(thinpre.pca3 <- princomp(lmdata48[, 

c("SDI_early_change_neg","Prerich_plot_herbs")], 

                                 cor = TRUE)) 

loadings(thinpre.pca3) 

 

#Add plot scores of PC components to data frame 

 

lmdata48$ThinprePCA3<-thinpre.pca3$scores[,1] 

lmdata48$ThinprePCA3_PC2<-thinpre.pca3$scores[,2] 

 

#Table 6 

 

#Model with only PC component 1 

 

r.squaredGLMM(lme(Laterich_plot_herbs~ThinprePCA3 + Burn, random=~1|Unit, 

data=lmdata48))#R2 

summary(lme(Laterich_plot_herbs~ThinprePCA3 + Burn, random=~1|Unit, 

data=lmdata48))#signs of t-stats 

anova(lme(Laterich_plot_herbs~ThinprePCA3 + Burn, random=~1|Unit, 

data=lmdata48), type="sequential")#pvals 

sqrt(anova(lme(Laterich_plot_herbs~ThinprePCA3 + Burn, random=~1|Unit, 

data=lmdata48), type="sequential")[,3])#tstats 

 

#Model with PC components 1 and 2 

 

r.squaredGLMM(lme(Laterich_plot_herbs~ThinprePCA3 + ThinprePCA3_PC2 + Burn, 

random=~1|Unit, data=lmdata48)) #R2 

summary(lme(Laterich_plot_herbs~ThinprePCA3 + ThinprePCA3_PC2 + Burn, 

random=~1|Unit, data=lmdata48)) #signs of t-stats 

anova(lme(Laterich_plot_herbs~ThinprePCA3 + ThinprePCA3_PC2 + Burn, 

random=~1|Unit, data=lmdata48), type="sequential") #pvals 

sqrt(anova(lme(Laterich_plot_herbs~ThinprePCA3 + ThinprePCA3_PC2 + Burn, 

random=~1|Unit, data=lmdata48), type="sequential")[,3]) #t-stats 

 

#5.2.3 Prioritizing predictors 

 

#Table 7 

 

r.squaredGLMM(lme(Laterich_plot_herbs~Prerich_plot_herbs_scaled + 

SDI_scaled_notcentered + Burn + SDI_scaled_notcentered:Burn, 

random=~1|Unit, data=lmdata48)) #R2 for all types of SS 

 

#Type III (marginal) 

 

summary(lme(Laterich_plot_herbs~Prerich_plot_herbs_scaled + 

SDI_scaled_notcentered + Burn + SDI_scaled_notcentered:Burn, 
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random=~1|Unit, data=lmdata48)) #type iii (marginal) ss; t-stats and p-

values 

 

#Type I (sequential). signs of t-stats are same as with original summary 

function (all positive) 

 

#SDI change as first term 

 

anova(lme(Laterich_plot_herbs~Prerich_plot_herbs_scaled + 

SDI_scaled_notcentered + Burn + SDI_scaled_notcentered:Burn, 

random=~1|Unit, data=lmdata48),type="sequential") #pvals 

sqrt(anova(lme(Laterich_plot_herbs~Prerich_plot_herbs_scaled + 

SDI_scaled_notcentered + Burn + SDI_scaled_notcentered:Burn, 

random=~1|Unit, data=lmdata48),type="sequential")[,3])#tstats 

 

#Burn as first term 

 

anova(lme(Laterich_plot_herbs~Prerich_plot_herbs_scaled + Burn + 

SDI_scaled_notcentered + SDI_scaled_notcentered:Burn, random=~1|Unit, 

data=lmdata48),type="sequential") #pvals 

sqrt(anova(lme(Laterich_plot_herbs~Prerich_plot_herbs_scaled + Burn + 

SDI_scaled_notcentered + SDI_scaled_notcentered:Burn, random=~1|Unit, 

data=lmdata48),type="sequential")[,3])#tstats 
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Conclusion 

 

 Evaluating ecological restoration of dry forests is a complex task. As I have 

demonstrated, responses to thinning and burning may be sensitive to temporal and spatial scales 

of observation and to analytical specifications. Consideration of these sensitivities is essential to 

the full evaluation of ecological objectives. 

 In Chapter 1, I found that species diversity generally increased with prescribed burning, 

but responses varied among temporal and spatial scales. Herbaceous diversity responded only at 

the later post-treatment sampling date, suggesting that colonization was limited by slow dispersal 

and clonal growth. Annual species constituted most of this lagged response (in contrast with 

successional theory; Noble and Slatyer 1980). Both natives and non-natives showed positive 

responses to burning, with small-scale non-native responses indicating increases in local species 

density. While enhancement of non-natives has emerged as a theme among thinning and burning 

studies, short-term effects on natives are typically neutral or negative (Nelson et al. 2008, Willms 

et al. 2017). By examining responses over longer timeframes, I found that the diversity of natives 

(and annuals) continued to benefit more than a decade following treatment. This finding points to 

lasting positive effects of burning without the need for re-entry. 

 As thinning and burning experiments mature and more long-term, multi-scale studies are 

conducted, determining approaches to overcome common data challenges will become even 

more important. Such challenges include low replication, pre-existing variation, and spatially 

nested sampling plots. In Chapter 2, I presented alternative approaches to several critical 

considerations: aggregation of nested sample units, categorical or quantified treatment 

intensities, accounting for pre-treatment conditions, and collinearity among predictors. I found 
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that different approaches often result in different outcomes of statistical models. However, 

careful specification of research questions can help determine how to handle these challenges 

and permit use of data that necessitate alternative analytical approaches. 

 As managers move forward with planning and implementing dry forest restoration, they 

should be conscientious that ecological outcomes can vary among temporal and spatial scales 

and analytical approaches. To accommodate this variation, I recommend specifying the scales at 

which objectives are targeted and identifying solutions to data challenges before initiating 

experiments. I also recommend bearing in mind that short-term results can obscure long-term 

benefits. The enhancement of native understory diversity from thinning and burning, an 

important ecological benefit of these treatments, may only be detected if responses are measured 

over sufficient time periods. Planning for long-term monitoring that aligns with the temporal 

scales of ecological responses is key to determining if treatments primarily applied for the 

reduction of fuels in dry forests also achieve ecological objectives. 
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